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The Instrument Spreading Correction in GPC.
Il. The General Shape Function Using the Fourier
Transform Method with a Nonlinear Calibration Curve*

EDWARD M. ROSEN and THEODORE PROVDER{

MONSANTO COMPANY
ST. LOUIS, MISSOURI 63166

Summary

The instrument spreading function suggested in Part I of this series is
investigated for use with the Fourier transform method for generating
corrected elution volume chromatograms. The instrument spreading
parameters are obtained using linear theory on narrow molecular weight
distribution standards, as indicated in Part I. The corrected chromatogram
is then combined with a nonlinear molecular weight calibration curve
which was fit with a function suggested by Yau and Malone to generate
true values of the number- and weight-average molecular weights.

The instrument spreading function is shown to qualitatively and
quantitatively describe the dispersion, skewing, and flattening effects
ordinarily found in GPC chromatograms due to imperfect resolution by
the GPC columns. The Yau-Malone function is shown to be a very use-
ful funetion for fitting nonlincar molecular weight vs elution volume
calibration data. Although the Fourier transform method is shown to
work well with analytically generated data, it is shown that a number of
numerical problems must be overcome before it can quantitatively
produce corrected elution volume chromatograms. Some of these numer-
ical problems are discussed.

* Presented at the ACS Symposium on Gel Permeation Chromatography,
sponsored by the Division of Petroleum Chemistry at the 159th National Meeting
of the American Chemical Society, Houston, Texas, February, 1970.

T Author to whom all correspondence should be addressed at: SCM Cor-
poration, Glidden-Durkee Division, Dwight P. Joyce Research Cenier, 16651
Sprague Road, Strongsville, Ohio 44136.
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1. INTRODUCTION

In the first paper of this series (1) {denoted as (I.) throughout the
present paper], a general instrument spreading function was suggested
which, together with a linear molecular weight calibration curve, was
used to correct the infinite resolution gel permeation chromatography
(GPC) number- and weight-average molecular weights and intrinsic
viscosities, denoted respectively by M,(«»), M,(»), and [5](=), to
their true values, denoted respectively by M,(f), M,(t) and [4]({). In
addition, it was shown that the hydrodynamic volume concept could
be used to evaluate a reasonable approximation to the corrected dif-
ferential molecular weight distribution (DMWD) curves.

This approach had three major limitations. (a) The log; M vs elution
volume calibration curve had to be linear over the elution volume range
of interest. (b) The instrument spreading correction factors were as-
sumed to be constant over the elution volume range of interest. (¢) The
corrected elution volume chromatogram could not be calculated directly.

In order to overcome the first difficulty, use was made of a nonlinear
calibration curve, the functional form of which was suggested by Yau
and Malone (2). To circumvent the second and third limitations, use
was made of the Fourier transform method (3, 4).

2. THE INSTRUMENT SPREADING FUNCTION

Tung (8) has shown that the normalized (i.e., area under the curve
is unity) observed GPC chromatogram F(v) at elution volume v is
related to the instrument spreading function G(v — y) and the nor-
malized corrected chromatogram W(v) by means of the equation

Fo) = [° 6w — W) dy o)

where F(v) is known, G(v — y) is postulated, and W(y) is to be evaluated.
Physically, G(v — y) can be thought of as the distribution function of
elution volume about an elution volume y describing the shape of the
chromatogram resulting from an ideal monodisperse species passing
through a set of GPC columns, and W{y) as the weighting factor for the
species such that Iiq. (1) is satisfied. Whatever form is chosen for
G(v — y), it should be capable of describing the behavior of the observed
chromatogram of a nearly monodisperse standard.

As indicated in (I.), the instrument spreading function chosen has
been widely used in the statistical literature (5, €) to deseribe perturbed
Gaussian density functions and recently has been used to describe
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chromatogram shapes in gas-liquid chromatography (7). The instrument
spreading function is given by

G@) = $(2) [1 + ) (An/nDH,.(x)] ()
n=3
where
6(z) = (1/2m)"2 exp (—2%/2) ®
and
z= (v —y)/Vi @

H.(z) are the Hermite polynomials defined in Table 1 and u, is the

TABLE 1

Properties of Hermite Polynomials

Hermite Polynomials

Ho(x) =1
Hi@z) =«
Hz(x) =zt -1
Hi(x) = 2* — 3z

Hyz) =z* — 622+ 3

Generating Funetion
L4

z Hn@ , _ exp (/2 + tz]
m!

m=0

Orthonormality Relationship

(1/2)12 /_: Ho(z)Hn(z) exp (—22/2) dz = g! Z ; Z

second moment of the instrument spreading function about an elution
volume y. When A, = 0 for n > 5, Eq. (2) becomes the Gram-Charlier
(A) series which shall be used throughout this paper and is given by
G — y) = (1/2mp)"? exp [~ (v — y)?/2ps]

X AL+ (Ay/3VHi[( — v)/ Vil + (A/AVH L — y)/Vsl}  (5)

where A; and A, are skewing and flatness parameters defined by the
equations

As = ps/ud® = VB, (6)
Ay = ps/u3 ~3=08,—3 )]
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The parameters us, u3, and u, are the second, third, and fourth moments
of G(v — y) about elution volume y. In general,

= [T 0—Co—pdo -y n=234  (@§

Since the instrument spreading parameters u, cannot be measured
directly, they will be determined by an indirect procedure. Barton and
Dennis (8) examined Eq. (5) for regions in which it remained positive
definite and unimodal. Their results are shown in Fig. 1 in terms of the
parameters 8; and B, defined by Egs. (6) and (7). The corresponding
regions for the Edgeworth series (Eq. 2 with As = 1042 and 4, = 0
for n > 7) used in (I.) are also shown. Figure 1 shall be referred to in
the discussion of the determination of the instrument spreading param-
eters in Section 6.

A number of relationships between the moments of F(v) and the
moments of W(y) can be derived directly from Egs. (1) and (2) by
using the properties of the Hermite polynomials. These relationships
together with the notations used are summarized in Table 2.

BOUNDARY OF
POSITIVE
CURVES |DEFINITE UNIMODAL
REGION REGION
1.2 [GRAM-CHARLIER| e — e .
| EDGEWORTH | — e = - o |
tof .
0.8+ .
B B " B
! 0.6 /’ \\ -
- // \ _]
04 / /_/'*\ - - ‘\~\‘ _
— - S \ \\ n
02 — ’;’4’ \{\\‘ \‘ —
- \ !
P} -l S S S U T Y Y (N . O S O N
30 35 4.0 45 5.0 55 6.0 6.5 70
B,

FIG. 1. Unimodal and positive definite regions in the ;-8 plane for
Gram-Charlier and Edgeworth Curves.



14: 37 25 January 2011

Downl oaded At:

INSTRUMENT SPREADING CORRECTION IN GPC. I 489

TABLE 2

Nomenclature and Relationships Among the Moments of the Raw and Corrected
Chromatograms and the Instrument Spreading Function

Nomenclature
Raw Instrument spread- Corrected chromato-
chromatogram F(v) ing function G(v-y) gram W ()
Parameter (moments about ) (moments about y) (moments about u)
TUnnormalized area A 1 A
Normalized area 1 1 1
Mean I 0 I
Second moment ms 2 my
Third moment ms 13 m¥
Fourth moment My Ba my
Moment Relation
Zero Area of unnormalized W(y) = Area of unnormalized F(v)
First Mean of W(v) = Mean of F(v)
Second my = me — ps
Third m¥ = ms — ps
Fourth mf = my — Gpoms + 6ul — uy

To illustrate the general method used to derive these relationships,
consider the third moment caleulations. The third moment about zero
elution volume is given by

@) = /_: v*F() dv = /_: /_: Gl — W) dy dv (9)

Substituting Eqgs. (2), (3), and (4) into (9) and reversing the order of
integration yields

@ = [7 W) [7, s@IH) + (45/3)Ha(@) + (A/A)Hi(@)]
[Viuz + yP dzdy (10)

Expanding and integrating term by term yields
@) = [7 W@Awd” + 3wy + v dy (1

Then
@) = () + A + 3pau (12)
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Expressing Eq. (12) in terms of moments about the mean results in the
following relation

m; = Mz — U3 (13)

3. THE FOURIER TRANSFORM METHOD

Equation (1) is an integral equation of the convolution type and
classically has been solved by means of Fourier transforms. This trans-
formation is performed because the relationship can be reduced to a
simple algebraic expression in the transformed k-space. Following Tung
(3), the Fourier transform of both sides of Eq. (1) yields the relation

W) = (1/2x)'2[F(k)/G (k)] (14)
where

F(k) = (1/25)12 f_i, F(v) exp (ikv) dv (15)

G(k) = (/20 [° G — y) exp k(v — ] d@ — ) (16)

Wk) = (1/2x)1" /_2 W () exp (ikv) do an
and

F(k) = F (k) + iF (k) (18)

G(k) = G(k) + 1Gi(k) (19)

W(k) = W(k) + iW.k) (20)

Use of Eqgs. (18), (19), and (20) in Eq. (14) leads to the following rela-
tions for W,.(k) and W (k)

Fo(k)G(k) + Fi(k)Gi(k)

W.(k) = 21
®© = [G2(k) + Gi(K)] &b
Fi(k)G(k) — F.(k)G:(k)
Wik) = 22
® V2r [Gi(k) + Gi(k)] 22)
Once W (k) is determined, W (v) can be obtained from
W) = (1/2r)12 /_: W (k) exp (—ikv) dv (23)

Upon noting that W.(k) and W;(k) are even and odd functions, respec-
tively, in k-space, W(v) can be expressed in terms of W,(k) and W(k)
by the equation
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W) = (1/2r)H /_: [W.(k) cos (kv) + Wik) sin (ko)] dk (24)

The operational procedure used for the determination of W(v) con-
sists of the following steps. First, F,(k) and F.(k) are numerically evalu-
ated from the normalized observed chromatogram F(v).

Fuk) = (1/20)1 /_: F(v) cos (kv) dv (25)
Fik) = (1/2x)12 /_“"=° F() sin (kv) do (26)

Using the generating function of Table 1 and Egs. (5), (6), and (7) in
Egs. (16) and (19), analytical expressions are obtained for G,(k) and
Gi(k).

Gr(k) = (1/2m)% exp (—k*ua/2)[1 + (k*/24) (ns — 3u)} 27
Gi(k) = (1/2x)2 exp (—K*us/2)[—Kus/6] (28)

Upon knowing or assuming values for ue, ps, and w4, G.(k) and G.(k)
are evaluated and then W,(k) and W;(k) are obtained from Egs. (21)
and (22). Finally, W(v) is evaluated from Iiq. (24).

Although the parameters ps, ps, and uy are assumed to be constants
or slowly varying functions of the elution volume » during the integra-
tions, in general they shall be considered to be strong functions of the
elution volume » in the evaluation of W (). In general, G(k) and W (k)
then will both be funetions of ». This inconsistency will remain a limita-
tion of the method, particularly when gs, u3, and g4 are no longer slowly
varying functions of ». Note, however, regardless of the nature of G(k),
F (k) needs to be evaluated only once beeause it is only a function of the
observed chromatogram.

4. NUMERICAL PROCEDURES

The evaluation of the integrals in Eqs. (25) and (26) have been the
subject of considerable numerical investigations (9, 10). Tung (3) used
the discrete Fourier transform (DFT), which considers the integrals
as infinite sums.* The fast Fourier transform (FFT) is an cfficient
method for the evaluation of the DFT when the number of data points
tends to be very large. However, for GPC data the sampling interval
is not excessively small nor is the range of elution volumes very large.
Hence, the integral form can be used without excessive computational

* Examination of the Fortran computer program supplied by Dr. Tung indicated
the use of the DFT.
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work. In order to evaluate Eqgs. (25) and (26), the range of integration
must be transformed to some convenient point about the center of the
chromatogram, vy, which is an even multiple of the increment size used
in k-space. Upon letting

2=10—1 (29)
Eqs. (25) and (26) become
F.(k) = cos (kvo)F1(k) — sin (kvo)Fa(k) (30)
and
Fi(k) = cos (kvo)Fa(k) + sin (kvo)Fa(k) (31)
where
Fy(k) = (1/20 [ ° F(G) cos (ke) de (32)
and
Fa(k) = (1/2m)v2 j_‘: F(2) sin (kz) (33)

Under this transformation Eq. (24) becomes

W) = (/20 [° [Wik) cos (ke) + W(k) sin (k)] dk (34)

where
F(k)G.(k) + Fi(k)Gi(k)
O =" 35
o V2r [Gk) + Gi(E)) (35)
Wak) = Fok)G. (k) — F.1(k)G«(k) )

V2 [Gik) + GiK)]

Equations (32) and (33) are evaluated by breaking F(z) into small
straight-line segments and analytically integrating over the segments.
This technique is known generally as the Filon Quadrature (11). For
example, for the jth interval let Fi(z) = a; + bz. For N data points
(not necessarily equally spaced), Eq. (32) becomes

N-1
Fy(k) = (1/ 2#)"23 z (a;j/k)[sin (kzj11) — sin (kz;)]
1
1
+ (d;/k)[cos (kzjp1) + ke sin (kzipr)

7

2z
[

]
-

— cos (kz;) — kz; sin (kz;)] k=0 (37)
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In practice, both Fi(k) and F.(k) are evaluated at equal intervals
of k. By noting that F\(k) = Fi(—k) and Fy(k) = —Fs(—F), the evalua-
tion starts at £ = 0 and simultaneously proceeds out in the positive and
negative directions in k-space. The actual interval used in k-space varies
because it is dependent on the value of kma.x required for the evaluation
of Fi(k) and Fi(k). Generally, the intervals in k were in the range »/600
< Ak < 7/20. Since equal increments in k-space were selected, it was
convenient to avoid multiple evaluations of the sine and cosine functions
by means of expressions such as

sin (IC,;+1Z,') = §in (’CiZ,' + Aij)
sin (kiz;) cos (Akz;) + cos (kiz;) sin (Akz;) (38)

One of the major difficulties of the entire method, however, was
determining the value of km.x out to which F(k) should be evaluated.
When F(v) is a smooth analytical function, the magnitude of F(k) goes
to zero very smoothly as |k| increases. Therefore |F(k)} can be monitored
and the generation terminated when |F(k)| becomes suitably small.
However, when F(v) is actual experimental data, no such smooth be-
havior is encountered. In fact, rather slowly undulating oscillations
are encountered as |k| increases. This is due to two factors: (a) Noise
and oscillations actually are present in F(v); and (b) whenever a dis-
continuity appears in F(v), due to the fact that the experimental data is
chopped off at some arbitrary point before having a chance to approach
zero asymptotically, oscillations will appear in the transform. Taking
the transform of any simple function which is nonzero within a finite
interval and zero outside of the interval will illustrate this point (12).

1t is very difficult indeed to separate these two effects and determine
the value of |k! at which to terminate the evaluation of F(k). If the
numerical evaluation of F(k) is performed out to values of |k| that are
too large, round-off errors will predominate because F (k) is divided by
G(k), which itself goes to zero, resulting in a 0 -  calculation. Termina-
tion of the evaluation of F(k) at values of (k| that are much too small
will give poor results because much of the information is lost. Tung (3)
used an empirical rule to determine the value of kmax and indicated
that the results could be improved by varying this value for the particu-
lar problem.

A theoretical upper limit on kmax as given by the sampling theorem is

kwmax = W/AU (39)

where Av is the sampling interval. Some studies (13) have indicated that,
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in practice, this should be closer to 0.1(x/Av). However, a hard and fast
rule appears difficult to ascertain.

A number of approaches has been suggested to overcome this prob-
lem (10). One approach is the use of a “spectral window’’ (10) to provide
a weighting factor to force the tails of the chromatogram to approach
zero smoothly. The use of a spectral window will be discussed further
in Section 8 as well as the method used in practice to determine kpax.

The evaluation of G(k) is made over the same range of k£ as used to
determine F(k). After W(k) is evaluated, W(v) is calculated using the
same quadrature method that was used to evaluate F(k). The spacing of
the W(v) function in v-space is determined by the spacing that was used
in k-space. Generally, F(v) curves covering narrow ranges of elution
volume require evaluations in k-space out to large values of k (a coarse
k-spacing) which in turn require very fine spacing in »-space for the
W(v) calculation. In this work, spacing was based on fractions of 600.
Thus if the interval in k-space was =/75, then spacing in the corrected
v-space was at count increments of 1/12.

5. THE CALIBRATION CURVE

Yau and Malone (2) derived a theoretical expression describing a
relationship between molecular weight and elution volume. Their equa-
tion is of the form

w [ ExcLUSION SELEGTIVE

N PERMEATION

n

e 4

<

=2

3

w 3

a TOTAL

e PERMEATION
2.}

3

g —— IDEALIZED CALIBRATION CURVE

1 1 =——-ACTUAL CALIBRATION CURVE \

d e
A A+B
ELUTION VOLUME (COUNTS)

FIG. 2. Illustrative GPC calibration curve.

R)
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v=A+ B{(1/vV/m)[1 — exp (—y*)] + erfe (¥)} (40)
where

The form of Eq. (40) has the characteristics of experimental GPC
molecular weight calibration curves and has a number of convenient
mathematical properties. If A4, B, C, and D are treated as parameters,
then Eq. (40) can be used to fit experimental molecular weight vs count
data.

The value of A, once determined, is the effective exclusion volume
and A + B is the total volume as indicated in Fig. 2 taken from Ref. 14.
If sufficient data are not present in the steep portions of the curve at
very high and very low elution volumes to determine A and B ade-
quately, then this physical significance is lost.

Calibration curves such as shown in Fig. 2 are arbitrary to the extent
that a particular molecular weight average such as M,, M, or (M, - M,)}

I I | [ | | T
6.5 -
© POLYSTYRENE 1.009s P(1) S1.26
STANDARDS
60— FITTED CURVE —
5.5 .
-
——
i
< a5 -
[
>3
Nod
Q‘-’ 40— A « 20.154 -
o B « 22.645
- € « 19.337
0 - 0.27977
ash —
) I VR U NN R S
%3 25 27 29 3 33 35 37

MEV (COUNTS)

FIG. 3, Molecular weight calibration curve for polystyrene standards.
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is associated with the peak elution volume (PEV) or mean elution
volume (MEV).

Whatever is used, nevertheless, appears to be satisfactorily fit with
Eq. (40). Figure 3 is a plot of the data given in Table 3 in which
(M, - M,)" is plotted vs MEV. Values* of 4, B, C, and D were deter-
mined from a nonlinear least squares fit (15, 16) of the data and are
shown in Fig. 3.

Pickett, Cantow, and Johnson (77) have shown that M, and M, can
be evaluated from

i, = [;’” (1/M)(da/dM) dM]“ (42)
M, = /1;’" M(da/dM) dM (43)
where
Vi
TABLE 3

Statistical and Molecular Weight Data for Polystyrene
Standards Based on Normalized Chromatograms at 1ml/min Flow Rate

Rune  107347,(t) 1030,  P@) MEV ma ms me
181-189 1610 1900 1.18 24.65 2.487 5.833  33.05
181-190 1780 2145 1.21 24.67 2.463 5.690  31.61
181-188 773 867 1.12  25.31 1.68 3.458  17.25
181-187 404 507 1.26 26.27 1.801 3.164  17.36
181-186 392 411 1.05 26.84 1.833 3.390 19.06
181-184 170.9 179.3 1.05 28.52 0.933 0.457 4.224
181-183 164 173 1.05 28.68 0.642 0.473 2.119
184-211  160.6 162 <1.008 28.71 0.649 0.479 1.927
184-210 95.1 96 1.02 29.8 0.556 0.350 1.268
180-182 96.2 98.2  <1.009 29.90 0.540 0.335 1.394
184-209 42.12 425 <1.009 31.56 0.524 0.450 1.603
180-180 19.65 19.85 1.01 33.32 0.600 0.135 1.212
184-208 16.35 16.5 <1.009 33.61 0.406 0.128 0.572
184-207 9.91 10.0 <1.009 34.57 0.318 0.0471 0.316
180-179 9.70 10.3 1.06 34.73 0.662 0.283 1.701
180-178 3.18 3.53 <1.11 36.78 0.766 0.276 1.863

¢ Refer to (1.) for the commercial sources of the polystyrene standards.

* A Fortran IV computer program which makes use of Marquardt’s algorithm
to solve a set of nonlinear equations can be found in Ref. 16.
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The first term on the right-hand side of Eq. (44) is the normalized
baseline-adjusted chromatogram height at elution volume vy, where

C(vy) is the raw chromatogram height at vy and fV:EC(v) dv is the

area of the raw chromatogram. The second term on the right-hand side
of Eq. (44) is the reciprocal of the slope of the calibration curve, f(v) =
logio M. Equation (44) can be expressed as

(da/dM) = —[C(vu)/area)(dv/dM)vy (45)
From Eqgs. (40) and (41)
(dv/dM vy = — (DB/YM /7)1 — exp (—¢?)] (46)

Since B, C, and D are always pos_itive, (dv/dM)vy is always negative.
Throughout this paper, M, and M, are determined by means of Egs.
(42), (43), (45), and (46).

6. EVALUATION OF THE INSTRUMENT SPREADING PARAMETERS

Before the Fourier transformed instrument spreading function de-
fined by Eqgs. (27) and (28) can be evaluated, it is necessary to determine
the values of uz, u3, and w4 as a function of elution volume. In principle,
these parameters can be determined from a knowledge of M, (t), M(t),
and [7](t) or M,(t). However, in this paper it shall be assumed that only
M, (t) and M, (t) are available. In addition an assumption shall be made
regarding the nature of the corrected chromatogram for narrow MWD
standards.

If the chromatograms of the characterized standard polymer samples
cover narrow ranges of elution volume, it can be assumed that (a) w2, s,
and p4 are slowly varying funetions of elution volume and will be reason-
ably constant over this elution volume range, and (b) the calibration
curve will be reasonably linear over this elution volume range. Under
these assumptions, it has been shown in (I.) that the following correction
equations are applicable.

;f—((jo’—) — exp (2/2){1 + VBi?/6 + (o420 — 3)]  (47)
Mw(oo) —_ 2 — 3 4 —
) xp /D11~ V64 /2WE = D] 69

where
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a =DV (49)
B1 = ui/u} (50)
Be = n4/us (51)

D, is the slope of the log. M vs elution volume calibration curve at a
specified elution volume v, and is given by

D, = (dlog, M/dv)., = [M(dv/dM),}™ (52)

In terms of the parameters of the Yau-Malone function, D, is expressed
as

D: = —(V7y/DB)[1 — exp (—yA)I™ (53)

Addition of Eqs. (47) and (48) results in an expression for the funda-
mental parameter a.

(M.,(6)/ M ()] + [Mw<w>/Mw(t>1} (54)

21 + (at/24)(82 — 3)]
Subtracting Eq. (48) from Eq. (47) and combining the result with Eq.
(54) yields an expression for the fundamental parameter 8;.

VB1 = (6/)[1 + (a*/24)(8: — 3)] 3 N
X {u‘_ln(t)/ﬂ_ln(w)] - [A_IW(oo)/J‘{w(t)]} (55)
[M(t)/ M ()] + [M,()/M(8)]

Equations (54) and (55) are two equations in the three unknowns «,
81, and B;. For the third equation, consider the relationship between the
fourth moment of the observed and corrected chromatogram as shown
in Table 1.

a? =2 Iog,{

my = mg — Bugms -+ 6p — ua (56)
If the corrected chromatogram for the standard is assumed to be nearly
Gaussian in shape, then m; = 3m,. Using this assumption along with
the relation m, = ms — e in Eq. (56) results in

pe — 3ui = my — 3mk (57)

Combining Eq. (57) with Eqs. (49) and (51) leads to the necessary third
equation

(a*/24)(B2 — 3) = (D3/24)(ms — 3m}) (58)

Use of Eq. (58) in (54) and (55) leads to expressions for « and 8, in

terms of quantities that can be determined by measurement or calcula-
tion.
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. (Ma(0)/M.(0)] + [Mu(2)/M.()]
o= 21°g‘{ 21 + (D3/28)(ms — 3md] }

@ V/B1 = 6[1 + (D3/24)(my — 3m})] _ ) )
L,/ M.()] — [u(0)/Hu(0)]
X — — — —
{[Mnu)/M,,(oo)] T [M,,,(oo)/Mw(t)]} (60

It is important to note that « is negative due to the negativity of D, in
Eq. (49).

The calibration procedure to obtain us, us, and xs as a function of
elution volume is described below. The raw data of the standards used
in this procedure are the data shown in Table 3 along with the corre-
sponding raw elution volume curves. The experimental GPC conditions
and procedures used for the generation of the raw chromatograms have
been described previously in (I.).

(a) The raw M,() vs MEV and M, () vs MEV data sets in Table
3 are each fit to the functional form of the Yau-Malone Eq. (40). The
smooth values M.(t), and M ,(t), are calculated from the fitted functions.
The results are shown in Table 4 with the subseript s denoting smooth
values.

(b) The infinite resolution molecular weight calibration ecurve is
obtained by using Eq. (40) to fit [M,(f) - M.(1)]¥2 vs MEV data. Values

TABLE 4

(59)

Smooth Values of Molecular Weight for Polystyrene Standards

Run MEV 1073%.(t), 10—°M (), P(t)s 1073M (), 103 (=), P(w»),

181-189 24.65 1510 1780 1.18 925 3090 3.34
181-190 24.67 1490 1740 1.17 913 3020 3.31
181-188 25.31 934 1100 1.18 661 1580 2.39
181-187 26.27 513 576 1.12 408 725 1.78
181-186 26.84 372 418 1.12 317 490 1.55
181-184 28.52 166 174 1.05 152 186 1.22
181-183 28.68 155 162 1.05 142 173 1.22
184-211 28.71 152 158 1.04 141 170 1.21
184-210 29.88 89.2 92.7 1.04 85.1 96.8 1.14
180-182 29.90 89.2 92.5 1.04 85.0 96.2 1.13
184-209 31.56 43.7 43.8 1.002 41.7 4.7 1.07
180-180 33.32 19.5 15.6 1.005 18.6 20.4 1.10
184-208 33.61 17.0 17.1 1.006 15.9 17.8 1.12
184-207 34.57 10.5 11.0 1.05 9.55 11.2 1.17
180-179 34.73 9.78 10.0 1.02 8.91 10.5 1.18
180-178 36.78 2.89 3.24 1.12 2.40 3.39 1.41
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of the Yau-Malone parameters are given together with the fitted curve
in Fig. 3.

(¢) The infinite resolution calibration.curve and the raw chromato-
grams of the standards are used to calculate M,(») and M,(»). These
values are again smoothed by fitting to Eq. (40). Values of M,( ). and
M, (), are shown in Table 4.

(d) The values of M,(8),, M,(t)s, M.(%), and M,(x), together
with the statistics of the standards given in Table 3 are used to find the
value of o2 from Eq. (59) at each MEV. Equation (53) is used to evaluate
D, at each MEV. Plots of « and o? vs MEV are shown in Fig. 4 and a
plot of D, vs MEV is shown in Fig. 5.

(e) Values of us are calculated at equal increments of elution volume
using Eq. (49) and Fig. 5. These results are given in Table 5 and plotted
in Fig. 6.

(f) Values of 4/B; are calculated at each MEV using Egs. (60) and

(o]
| a a?
0.8 P(t)$1.009 | o A -0u
1.OISP(1)<1.26 | © A
0.7 — ﬁ -0.2
06 —-0.3
(¢ X-] o —4-0.4
a? a
o4+ —4-08
0.3 -1-06
O.ZF —-1-07
0.1 -1-08
1 1 1 1 1

1 1
%3 25 27 2% 3 33 33 33
MEV (COUNTS)
FIG. 4. a and &’ vs MEV.
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-
| | | | ! ] ]
23 25 27 29 3 33 35 37

MEV (COUNTS)
FIG. 5. D, vs MEV.

TABLE 5
Interpolated Values of s, u3, and u4 at Equal Inerements of the Mean Elution Volume

MEV 2 13 e
23 0.825 0.970 19.1
24 0.950 0.695 19.0
25 1.05 0.270 17.1
26 1.05 0.160 13.2
27 0.927 0.047 8.15
28 0.750 0.00 4.32
29 0.593 0.0145 2.22
30 0.465 0.0346 1.15
31 0.397 —0.0750 0.706
32 0.370 —0.213 0.550
33 0.425 —0.500 0.650
34 0.510 —0.890 0.859
35 0.550 —1.18 0.966
36 0.595 —1.52 1.10
37 0.580 —1.63 1.01
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FIG. 6. m: and p: vs MEV,

(53) and Fig. 4. Then values of u; at equal increments of elution volume
are obtained from a plot of 4/8; vs MEV in Fig. 7, Eq. (50), and Fig. 6.

(f) Values of us at equal increments of elution volume are given in
Table 5 and plotted in Fig. 8.

(g) Values of B are calculated at each MEV from Egs. (58) and (53)
and Fig. 4. Then values of u. at equal increments of elution volume are
obtained from a plot of 8: vs MEV in Fig. 9, Eq. (51), and Fig. 6. Values
of us at equal increments of elution volume are given in Table 5 and
plotted in Fig. 10.

Several points in the above procedure are worthy of note. (a) The
smoothing operations on M,(t), M,(t), M.(®), and M,(=) eliminated
much of the scatter in the plots of us, u3, and u, vs MEV. (b) The entire
calibration procedure was rather arbitrary because, in principle, M, (t) vs
PEV could have been used instead of [M,(t) - M,(t)]* vs MEV. However,
use of M,(t) vs PEV gave less satisfactory numerical values of 8.

The rather surprising shape of the u» vs MEV curve in Fig. 6 can
perhaps be justified by plotting values of m. on the same plot. Since
m, must always be positive, this implies that ms > us. With the excep-
tion of two points of the ultranarrow recycle polystyrene standards, the



14: 37 25 January 2011

Downl oaded At:

INSTRUMENT SPREADING CORRECTION IN GPC. Il 503

.0 | T I T ] T
0.5 —
OpF mem e I o v e\ e ——— - — —
-0.5 -
1.0 —
A P(1) € 1.009
\/p: O 1Ol s P{t) 5126

-2.8— ~
30— —
"33 ] | | | | |

23 25 27 29 3 33 35 37

MEV (COUNTS)

FIG. 7.V B: vs MEV.

values of m, are, in fact, greater than u, within experimental errors.
Similar reasoning can be applied to Fig. 10. Since m* > 0, it follows
from Eq. (56) that

m} + My = My — 6#27712 + 6[‘3 > s (61)

Generally, m; > 0.03 over most of the elution volume range. There-
fore, Eq. (61) holds. Figure 10 illustrates that, generally, m; < us
because many of the experimental data points are almost indistinguish-
able from the g4 curve.

It is difficult to assess the effect of the use of the approximation given
by Eq. (58) except to note that, generally, Di(m, — 3ml)/24 « 1.
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FIG. 8. u: vs MEV.

However, when | Dl begins to climb rapidly in the low MEYV region, the
above inequality is no longer valid and the approximation made in
Eq. (58) may introduce serious errors in the determination of us, us,
and u,.

Over some regions of elution volume the values of 8; and 8, fall out-
side the unimodal and positive definite regions of the Gram-Charlier
curves as indicated in Fig. 1. However, this does not necessarily mean
that the instrument spreading function is predicting unrealistic values
over the elution volume range of the sample. Unrealistic values of
G (v-y) that do oceur over the elution volume range of the sample may
be so small that they have no practical significance with respect to the
values of W(v) generated by the numerical Fourier transform method.
Consider, for example, that the normalized observed chromatogram
can be described by the skewed Gaussian function
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FIG. 9. 8. vs MEV.

F@) = (1/2rmo)Y2 exp [— (v — p)_2/2m2] o
X {1+ (Ca/3NHsl(v — p)/V'ma] + (Co/AVH (v — p)/Vma)}  (62)

where

Cs = ’”L:g/?'ﬂ/gl2 (63)
Ci= my/m; — 3 (64)

Then
F(k) = (1/V2r) exp (—k*ma/2) {1 + (C3/3Y)(ik V'ms)? + (Co/AN)k*m3)}
(65)

From Egs. (27), (28), and (14)

—k2(m2 — ua)
2

N 14§ Gk v + 5 e
W(k) = (1/v/2m) exp[ ] = —
L A3 G + At
(66)

Equation (66) contains an exponential in m; multiplied by a ratio of
polynomials in the parameters 8; and 8, through the coefficients 43 and
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FIG. 10. us and m, — 6uym. + 642 vs MEV.

A4, and in the parameters m; and m, through the coefficients C; and
Cy. If my (my = ma — ug) is large, it is not necessary to go out too far
in k-space in order for the exponential term to wash out the effect of
the bracketed term in Eq. (66) and force |W (k)| to go to zero. On the
other hand, when m; is small, it is necessary to go out farther in k-space.
Then, the effect of noise in the numerical F(v) data and round-off errors
tend to be greatly magnified at large values of k and prevents |W(k)!
from going to zero. If |W (k)| is poorly bounded, W(v) will tend to have
unrealistic values manifested by large positive and negative oscillations.

7. TEST RESULTS—ANALYTICAL DATA

In order to check the numerical procedures used in the Fourier trans-
form method, two analytical functions were chosen for study. The
first test funetion was designed to check the funetioning of the dispersion,
skewing, and flattening parameters. The observed chromatogram was
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deseribed by a skewed Gaussian function which transformed to a cor-
rected chromatogram that was deseribed by a pure Gaussian funection.
The pure Gaussian function in k-space is given by

W(k) = (1/2x)'? exp (—k*m3/2) (67)

Using Egs. (27), (28), and (14), the following expression can be derived
for F(v)

F(v) = (1/2rmz)"2 exp [— (v — w)*/2mal{1 + (us/6mi*) Hol (v — w)/V/ms]
+ {(ue — 3ud)/24m3 H{(v — )/ V'ma} (68)

where
me = m; + u2 (69)

F(v) was generated over the range 18 < v < 42 about p = 30 with
Ay = (.1.

Equation (67) immediately suggests a method for determining a
means of estimating the value of km.x in k-space out to which F(k)
should be evaluated. If k... is such that exp (—k*m*/2) = 5 X 1075,
then

kasx = [—21og. (5 X 107%)/(ms — u2)]*? (70)

This was the method used to estimate kma.x throughout this paper. If
|F (k)] reached a minimum value of 5 X 10~ before k., was encountered,
then that value of & was the largest value of k used.

Table 6 illustrates the performance of the numerical procedures used
in the computer program to transform the test F(v) function in Eq. (68)
to the corrected Gaussian function for varying values of m,. As m"
decreased the value of kuax increased, and larger values of Ak were
required to proceed to the desired value of kwmax because a fixed number
of computer storage locations were allotted for Ak-increments in k-space.
In all cases the minimum value of [F(k)| was encountered before kiax
was reached. When m; was small, this resulted in |W(k)|, the critical
quantity, being too large at the termination of the generation. Conse-
quently, there was a loss in the accuracy of the computation as measured
by the statistics.

It can be argued that a better procedure would be to always allow
the computation of F(k) to proceed until k.x is encountered. However,
very small values of |F (k)] would be used and roundoff and integration
errors would begin to predominate. With the above method there is a
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TABLE 6
Results for Analytical Test Functions

Test function, Eq. (68), us = —0.7, us = 4.5, Tung’s
fixed values of m} function
Eq. (71)
Statistic 1.0 0.5 0.3 0.1 H =04
Rawe area 1.0000 1.0000 1.0000 0.99999 0.99999
Corrected® area 0.99977 1.0003 1.0025 1.0266 0.99959
Raw MEV 30.000 30.000 30.000 30.000 27.40
Corrected MEV 30.000 30.000 30.000 30.000 27.39
me 2.0000 1.5000 1.3000 1.1000 16.49
p 1.0000 1.0000 1.0000 1.0000 3.125
Predicteds m; 1.0000 0.50000 0.30001 0.10003  13.37
Corrected m; 1.0031 0.50442 0.31519 0.11245 13.60
ms —0.69952 —0.69980 —0.69972 —0.69984 10.37
pa -0.7 -0.7 -0.7 -0.7 0
Predicted m; 0.00048 0.00019 0.00028 0.00016 10.37
Corrected m} 0.00017 0.000058 0.000016  0.000003 10.32
my 13.500 8.2510 6.5696 5.1298 679.64
™ 4.5000 4.5000 4.5000 4.5000 29.29
Predicted m} 2.9998 0.75098 0.26960 0.029583 399.60
Corrected mj 3.0555 0.76979 0.34160 0.029843 397.28
kmax from Eq. 4.94 6.98 9.02 15.62 1.35
(70)
Ak /50 /40 /30 /20 /20
|F (k) |min® 5% 10— 5 X 108 5 X 10-¢ 5 X 10 5 X 10~
Emax used® 3.39 4.00 4.39 4.86 1.35
|W (k)| at kmsx used  0.00125 0.00713 0.0215 0.119 0.00334

@ All the statistics preceded by the word “raw’’ are those calculated from F(v), the
normalized observed chromatogram.

b All the statistics preceded by the word “corrected’’ are those calculated from the
W (v) obtained from F(v) by the numerieal Fourier transformation procedures.

¢ All the statistics preceded by the word “predicted” are those calculated from the
relations in Table 2.

4 |F (k) |min Was set equal to 5 X 1078,

¢ kmax used refers to the actual largest value of & used to evaluate F(k).

limitation on the value of m; that can be handled with accuracy. With
experimental data the value of km., is always used because noise and
oscillations prevent |F(k)| from ever reaching any reasonably small
minimum value of {F(k)|. Figure 11 is a plot of F(v), the true W(v), and
the caleulated W(v) obtained from F(v) for the case where m; = 0.3,
M2 = 10, M3 = —07, and Ma = 4.5.
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FIG. 11. Test functionskewed Gaussian for my = 03, pg =1, p; = —0.7,

ps=45: —F(v) from Eq. (68), & corrected W(v). Note true values
of W(v) caleulated from Gaussian funetion are not shown because they
are coincident with the corrected values.

The second function studied was suggested by Tung (3) and is

B 0.325H _ (0.3250H%(v — 25)
Fl) = \/7[(0.325)t + H2]{ 6 [ (0.325)2 + H* ]

_ (0.3252H?(v — 31)2]}
+ 04 exp [ (0.325) + 2 7
with H = 0.4. Note that
H = 1/v2u (72)
The corrected chromatogram is
0.325
W) = —
® V'r

X {0.6 exp [—(0.325)%(v — 25)?] + 0.4 exp [— (0.325)2(v — 31)3]} (73)

F(v) was generated over the range 12 < » < 44 with Av = 0.1. The
numerical results for this case are also shown in Table 6. A plot of F (),
the true W(v), and the calculated W (») obtained from F(v) are shown in
Fig. 12.
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F1G. 12. Tung’s analytical test function for H =04, p» =0, px=—2929:
—F(v) from Eq. (71), & corrected W(v). Note true values of W{(v)
calculated from Eq. (73) are not shown because they are coincident with
the corrected values.

8. TEST RESULTS—EXPERIMENTAL DATA

In order to test the method on actual experimental data, five samples
were selected. The first was a broad MWD standard. The other four
were mixtures prepared by mixing three of the calibration standards
together in various proportions by weight. The resulting polyblends
were narrow in MWD and distinetly multimodal. These five samples
are described in Table 7.

Since the raw data tended to be noisy at the tails, the ‘‘spectral
window” shown in Fig. 13 was used to smooth the tails of the chro-
matogram. The window used was an extended cosine-bell data window
(10). This window generated a “factor’” between 0 and 1 by which the
raw data was multiplied over the first and last 109, of the total number
of data points. The middle 809, of the total number of data points was
unchanged.
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TABLE 7
Composition and Molecular Weight Data for Experimental Test Samples

Run® Wt%* composition 1034 o (t)e 10301 . (t) P(t)
181-185 NBS-706 136.5 257.8 1.889
196-302-1 0/50/50 64.9 74.6 1.15
196-305-1 75/25/0 23.1 27.6 1.20
196-306-1 25/75/0 35.6 43.2 1.21
196-308-1 16.7/33.3/50 48.8 69.4 1.42

s All samples were run at a flow rate of 1 ml/min.

b The wt9%, of each polystyrene standard in the mixture refers to the standards with
the run numbers in the following order: 180-180, 180-181, and 180-182.

¢ The true values, M.(t), i, (), and P(t) of the mixtures were calculated from the
true values of the individual components and compositions of the mixtures.

The distance in k-space, out to which F(k) was evaluated, was deter-
mined from Eq. (70) with u, evaluated at the MEV of the sample.
Values of W(v), which were generated out in each direction from v,
generally became negative at the ends of the chromatogram. If more
than five negative values were encountered, this was used as an indica-
tion to terminate the evaluation of W(v). However, this criterion allowed

FACTOR » i{l + cos[ -’-‘-'-’-‘-L]r}
XX, 4
| —
xixf X2 X1 \X X2
(]

0 ] |
— o — —-lO.l_N -

NUMBER OF POINTS, N

FIG. 13. An extended cosine-Bell data window.
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FIG. 14. Observed {—F (v)} and corrected {&, W(v)} chromatograms for
sample 181-185.

the generation of completely separated peaks. All negative values of
W (v) were set equal to zero.

Figures 14-18 are plots of F(v) and W(v) for the samples shown in
Table 7. The variations of the u2, r3, and us with elution volume that
were used in the calculations are given in Table 5. Linear interpolation
was used between the tabulated points.

Values of M,(») and M,(«) obtained from the calibration curve of
Fig. 3 and the observed chromatogram F(v), and values of M.(t),, and
M ,(t), obtained from the corrected chromatogram W(v) and the calibra-
tion curve of Fig. 3 are shown in Table 8. For comparison purposes
the values of u., us, and u, were evaluated at the MEV’s and were subse-
quently used to evaluate M,(t)z and M, (t)z from Eqs. (47) and (48).

As can be seen from a study of Table 8, the areas of W(v) are almost
always consistently higher than those of F(v). When the parameters
ue, p3, and u4 are functions of elution volume, it is difficult to prove
mathematically that the area of the raw chromatogram is equal to the
area of the corrected chromatogram. From Eq. (1)
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/—: FQ) dv = /_: f_: Gl — y)W(y) dy dv (74)

The use of the convolution theorem or a transformation of variables to
interchange the order of integration with respect to y and » to prove the
area equality requires the constancy of ws with v. The same argument
leads to the conclusion that none of the relationships of Table 2 strictly
hold. However, it should be noted from Table 8 and Fig. 16 that in the
case of sample 196-305-1, where the sample was in the range of rea-
sonable constancy of the u,’s, the areas indeed gave a reasonable
check. From physical arguments the areas must check within exper-
imental errors because the area under the chromatogram represents a
certain number of milligrams of material that has passed through the
GPC columns and the differential refractometer detector.

Table 8 also shows that the evaluation of F(k) always proceeded out
to the value of kuax. The minimum value of [F(k)| was not encountered
first because of the noise and oscillations in the data. Sinee there was

4 8‘.00

40.00

3200

196-302-1

(0/50/50)

1600

BASELINE-ADJUSTED HEIGHT
2400

800

8

<] v N d T
2400 26.00 2800 30.00 3200 3400 36.00

COUNTS

FIG. 15, Observed {—F(v)} and corrected {&, W(v)} chromatograms for
sample 196-302-1.
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F1G6. 16. Observed {—F(v)} and corrected {3, W(v)} chromatograms for
sample 196-305-1,

considerable doubt that the value of kn.x used was adequate, the value
of kmax was increased for each of the samples to 114 times the value
indieated in Table 8. Not much effect was observed in the broad MWD
sample. However, greater resolution of the components in the 196-series
of samples (small my’s) was achieved. How realistic this increased
resolution was is open to question. The “‘correct’’ value of knax to use is
unresolved and remains a major aresa for further investigation.

9. CONCLUSIONS

Based on this study several conclusions can be made.

(a) The instrument spreading function given by Eq. (5) is useful
for characterizing the dispersion, skewing, and flattening effects en-
countered in raw GPC chromatograms due to the imperfect resolution
by the GPC eolumns. It is limited, however, to applications where
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FIG. 17. Observed {—F(v)} and corrected {3, W(v)} chromatograms for
sample 196-306-1.

my is large enough to “wash out” large oscillations caused by large
values of 8; and 8; relative to the values of mz, ms, and m,.

(b) The Yau-Malone function given by Eq. (40) is a flexible and useful
equation for the fitting of molecular weight vs elution volume data.

(¢) The Fourier transform method, while it can be demonstrated
to work well on analytically generated data, has a number of problems
associated with it when applied to actual experimental data. At this
time these problems appear to be associated with two major considera-
tions: (1) It is not clear how far out in k-space to go in generating F (k)
and hence W(k). Equation (70), while probably qualitatively useful,
does not appear to be adequate. (2) It is not clear how serious are the
assumptions of the constancy of the parameters us, us, and u, with elution
volume in situations where they are reasonably strong functions of
elution volume and/or the sample covers a broad range of elution volume.

(d) The Fourier transform method is useful in qualitatively resolving
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FiG. 18. Observed {—F(v)} and corrected {&, W(v)} chromatograms for
sample 196-308-1.

peaks.

(¢) The calibration procedure used, though arbitrary, gives values
of the parameters ue, ps, and x4 which are physically reasonable. When
the sample is a parrow MWD sample, then Egs. (47) and (48) can be
used, with parameters evaluated at the MEYV of the sample, to evaluate
M. (t) and M,(t). When the samples are broad in MWD, the adequacy
of Eqs. (47) and (48) are in doubt because of the variability of the u.’s
with elution volume.

10. SUGGESTIONS FOR IMPROVEMENTS IN THE CALIBRATION
AND NUMERICAL PROCEDURES*

The use of Eqs. (47) and (48) tied together the determination of the
instrument spreading parameters with errors in the determination of

* Note added in proof. Since this manusecript was written the improvements
suggested in this section have been tried and have not been successful. A new
numerical technique for correcting observed chromatograms, which eliminates
some of the limitations of the Fourier Transform method, has been developed
and will be published elsewhere (18).
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TABLE 8
Results for Experimental Test Samples

Run

Statistie 181-185  196-302-1 196-305-1 196-306-1 196-308-1
107351 () 133.3 69.0 25.7 38.8 51.5
107347 () 364.5 87.8 34.2 51.4 78.3
P(w) 2.72 1.28 1.33 1.32 1.52
107247 (1) 137.2 74.0 26.8 43.7 56.2
107307 (D) 352.7 91.1 33.8 56.5 85.1
P(t). 2.57 1.23 1.31 1.29 1.51
10737 . (t) 2 144 .0 71.8 26.6 40.0 53.5
103/ . ()& 328.4 83.5 32.6 49.2 74.7
P(t)g 2.26 1.27 1.22 1.22 1.40
Raw area (smoothed)c 92.57 88.22 85.71 91.42 87.22
Corrected area? 94.35 93.81 84.28 104.1 94 .43
Raw MEV 28.12 30.24 32.44 31.46 30.65
ms 3.928 1.192 1.400 1.40 2.11
uz 8t MEV 0.7311  0.4487  0.3940 0.3840  0.4200
Predicted me 3.197 0.7435  1.005 1.017 1.680
Corrected my 3.670 1.045 1.133 1.278 2.090
kmax from Eq. (70) 2.76 5.73 4.92 4.89 3.80
Ak /100 /40 /50 /50 /60
Femax used’ 2.73 5.65 4.90 4.83 3.76

¢ All the statistics with a subscript w are those caleulated from the corrected
chromatogram W (v).

b All the statistics with a subscripted E are those calculated from Eqs. (47) and (48).

< All the statistics preceded by the word “raw’” are those calculated from F(v), the
normalized observed chromatogram.

4 All the statistics preceded by the word “corrected” are those calculated from the
W () obtained from F(»} by the numerical Fourier transformation procedures.

¢ All the siatistics preceded by the word “predicted’’ are those caleulated from the
relations in Table 2.

! kmax used refers to the actual largest value of k used to evaluate F(k).

the experimental values of M, and M,. It may be better to separate
the determination of the instrument spreading parameters from the
experimental values of M, and M, because these parameters should be
dependent only on the flow behavior of the polymer molecules through
the GPC columns. This may be done by assuming that Egs. (62), (63),
and (64) adequately deseribe the observed chromatogram of a nearly
monodisperse standard.

Then u,, ps, and w4 are directly obtained from the moments of the
F(v) curve.
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Ry = ms (75)
Hz = Mg (76)
Ka = My

Plots of us, us, and u4 vs MEV would then result. The plot of u; vs MEV
would be quite different from that obtained by directly using M. (¢)
and M,(t) data. This difference would be reflected in the molecular
weight calibration curve to be determined by the method deseribed
below.

Since F(v) =~ W(v) for each MEV, then the Yau-Malone parameters
can be sought such that M ,.(t),, and M,(t), are fit as closely as possible
to the experimentally determined values of M.(f) and M,(f). In this
way experimental errors associated with M,(t) and M,({) would be
smeared out over the entire calibration curve.

A major source of difficulty in the numerical Fourier transform method
is the determination of the proper value of knax at which to stop the
evaluation of W(k) before the effects of noise in the numerical F(v)
data and roundoff errors prevent |[F(k)| and thus |W (k)| from smoothly
approaching zero. If F(k) can be fit by a function having a generalized
form of the type shown in Eq. (65), then W (k) may be expressed by an
analytical function of the form similar to Eq. (66), which appears to
have better numerieal properties in that |W (k)| will be forced to smoothly
approach zero. As was shown previously, the Fourier transform method,
indeed, does work well on analytically generated data.
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List of Symbols*

A,B,C, D parameters of the Yau-Malone nonlinear molecular
weight calibration curve as defined by Eq. (40) and
illustrated by Fig. 3
a;, b; intercept and slope parameters of a straight line seg-
ment approximating F(v) over jth interval for the
Filon Quadrature method

*Symbols and notation found in the text and not defined here have been
previously described in (1.).
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Ca, C4
DFT
FFT

[F (%) |mia
F;(2)

Fy(k), Fy(k)

H

(L)

K max

MEV
M. (8)g

Mo ()0 M),

M)

Mw(t)E

Mo()e, Mut),

M,(#)o
* * *
My, My, My

P()r

P(e),, P(t),

skewness and flatness coefficients of the analytical
skewed Gaussian function deseribed by Eq. (62)
discrete Fourier transform

fast Fourier transform

minimum value of |F(k)| chosen as the point in
k-space to terminate the evaluation of F(k)

value of F(v) over jth interval approximated by
straight line segment

real and imaginary parts of the Fourier transforma-
tion of the observed chromatogram F(v) about v, as
defined by Egs. (29), (32), and (33)

resolution factor as defined by Tung (3) and de-
scribed by Eq. (72)

Paper I of this series described in Ref. 1

the maximum value of % in k-space out to which
F (k) should be evaluated

mean elution volume

value of number-average molecular weight obtained
from values of uz, u3, and x4 at the MEV used in Eq.
(47)

smoothed infinite resolution and true number-
average molecular weights, respectively, by use of
the Yau-Malone function, Eq. (40)
number-average molecular weight calculated from
corrected chromatogram, W(v)

value of weight-average molecular weight obtained
from values of ua, ps, and 4 at the MEV used in Eq.
(48)

smoothed infinite resolution and true weight-
average molecular weights, respectively, obtained
by use of the Yau-Malone function, Eq. (40)
weight-average molecular weight calculated from
corrected chromatogram, W(v)

second, third, and fourth moments about the mean
of the corrected chromatogram, W (v)

value of the polydispersity ratio obtained from the
values of ug, u3, and x4 at the MEV used in Eqs. (47)
and (48)

smoothed infinite resolution and true polydispersity
ratio, respectively
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P(t), polydispersity ratio obtained from the corrected
chromatogram, W(v)
Vo elution volume at center of the chromatogram about
which to transform the range of integration in Egs.
(25) and (26)
v, specified elution volume at which (dv/dM),, is to be
evaluated
v®) third moment about the origin of the normalized
observed chromatogram
{y® third moment about the origin of the normalized
corrected chromatogram
Wik), Wa(k) real and imaginary parts of the ¥ourier transforma-
tion of the corrected chromatogram W (v) about v as
defined by Egs. (29), (35), and (36)
z transformed variable defined by Eq. (29)

Greek Letters

W W~

10
11

a reduced parameter defined by Eq. (49)
B1, B2 reduced parameters of G(v — y) function defined by
Eqgs. (6) and (7)
1 mean elution volume
¥ reduced parameter of Yau-Malone function defined
by Eq. (41)
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