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The Instrument Spreading Correction in GPC. 
I I .  The General Shape Function Using the Fourier 
Transform Method with a Nonlinear Calibration Curve* 

EDWARD M. ROSEK and THEODORE PROVDERt 

ST. LOUIS, MISSOURI 63166 
MONSANTO COMPANY 

Summary 

The instrument spreading function suggested in Part I of this series is 
investigated for use with the Fourier transform method for generating 
corrected elution volume chromatograms. The instrument spreading 
parameters are obtained using linear theory on narrow molecular weight 
distribution standards, as indicated in Part I. The corrected chromatogram 
is then combined with a nonlinear molecular weight calibration curve 
which was fit with a function suggested by Yau and Malone to generate 
true values of the number- and weight-average molecular weights. 

The instrument spreading function is shown to qualitatively and 
quantitatively describe the dispersion, skewing, and flattening effects 
ordinarily found in GPC chromatograms due to imperfect resolution by 
the GPC columns. The Yau-Malone function is shown to be a very use- 
ful  function for fitting nonlinear molecular weight vs elution volume 
calibration data. Although the Fourier transform method is shown to 
work well with analytically generated data, it  is shown that a number of 
numerical problems must be overcome before it can quantitatively 
produce corrected elution volume chromatograms. Some of these numer- 
ical problems are discussed. 

* Presented at the ACS Symposium on Gel Permeation Chromatography, 
sponsored by the Division of Petroleum Chemistry at  the 159th National Meeting 
of the American Chemical Society, Houston. Texas, February, 1970. 

t Author to whom all correspondence should be addressed a t :  SCM Cor- 
poration, Glidden-Durkee Division, Dwight P. Joyce Research Center, 16651 
Sprague Road, Strongsville, Ohio 44136. 
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486 E. M. R O S E N  AND T. P R O V D E R  

1. INTRODUCTION 

In  the first paper of this series ( I )  [denoted as (I.) throughout the 
present paper], a general instrument spreading function was suggested 
which, together with a linear molecular weight calibration curve, was 
used to correct the infinite resolution gel permeation chromatography 
(GPC) number- and weight-average molecular weights and intrinsic 
viscosities, denoted respectively by i@n( 00 ), am( 00 ) , and [q] ( 00 ), to 
their true values, denoted respectively by an(t), &fW(t)  and [v](t) .  In  
addition, it was shown that the hydrodynamic volume concept could 
be used to evaluate a reasonable approximation to the corrected dif- 
ferential molecular weight distribution (DMWD) curves. 

This approach had three major limitations. (a) The log,, M vs elution 
volume calibration curve had to be linear over the elution volume range 
of interest. (b) The instrument spreading correction factors were as- 
sumed to be constant over the elution volume range of interest. (c) The 
corrected elution volume chromatogram could not be calculated directly. 

In  order to  overcome the first difficulty, use was made of a nonlinear 
calibration curve, the functional form of which was suggested by Yau 
and Malone (2). To  circumvent the second and third limitations, use 
was made of the Fourier transform method (3, 4). 

2. THE INSTRUMENT SPREADING FUNCTION 

Tung (3) has shown that the normalized (i.e., area under the curve 
is unity) observed GPC chromatogram F(v )  a t  elution volume v is 
related to the instrument spreading function G(v - y) and the nor- 
malized corrected chromatogram W(v) by means of the equation 

F(v )  = G(v - Y>W(Y> &V (1) 

where F(v )  is known, G(v - y) is postulated, and W(y) is to be evaluated. 
Physically, G(v - y) can be thought of as the distribution function of 
elution volume about an elution volume y describing the shape of the 
chromatogram resulting from an ideal monodisperse species passing 
through a set of GPC columns, and W(3)  as the weighting factor for the 
species such that 13q. (1) is satisfied. Whatever form is chosen for 
G(v - y),  i t  should be capable of describing the behavior of the observed 
chromatogram of a nearly monodisperse standard. 

As indicated in (I.), the instrument spreading function chosen has 
been widely used in the statistical literature (5,  6) to describe perturbed 
Gaussian density functions and recently has been used to describe 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



INSTRUMENT SPREADING CORRECTION IN GPC. II 487 

chromatogram shapes in gas-liquid chromatography (7). The instrument 
spreading function is given by 

where 

~ ( x )  = ( 1 / 2 ~ ) ' / ~  exp (-x2/2) (3) 
and 

2 = (v - y ) / f i *  (4) 
H , ( x )  are the Hermite polynomials defined in Table 1 and 112 is the 

TABLE 1 

Properties of Hermite Polynomials 

Hermite Polynomials 
Ha(z) = 1 
H l ( Z )  = 2 
H2(x)  = 2 2  - 1 

H4(z) = x4 - 6z2 + 3 
Generating Function 

H3(2) = 2' - 32 

m =O 

Orthonormality Relationship 

second moment of the instrument spreading function about an elution 
volume y. When A,, = 0 for ri 2 5, Eq. ( 2 )  becomes the Gram-Charlier 
( A )  series which shall be used throughout this paper and is given by 
G(v - y) = (1/2~112)l/~ exp [-  (v - y)2/2p2] 

X ( 1  + (A3/3Wd(v - ~ ) / d G l  + (A4/4!)H4[(~ - y ) / l / L ] )  (5) 
where AS and A4 are skewing and flatness parameters defined by the 
equations 
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488 E. M. ROSEN AND T. PROVDER 

The parameters ~ 2 , 1 1 3 ,  and p4 are the second, third, and fourth moments 
of G(w - y) about elution volume y. In  general, 

pn = /-"o (v - Y ) w ( ~  - Y) d(v  - Y> n = 2,394 (8) 

Since the instrument spreading parameters pn cannot be measured 
directly, they will be determined by an indirect procedure. Barton and 
Dennis (8) examined Eq. (5) for regions in which i t  remained positive 
definite and unimodal. Their results are shown in Fig. 1 in terms of the 
parameters PI and P 2  defined by Eqs. (6) and (7). The corresponding 
regions for the Edgeworth series (Eq. 2 with As = 1OA: and An = 0 
for n 2 7) used in (I.) are also shown. Figure 1 shall be referred to in 
the discussion of the determination of the instrument spreading param- 
eters in Section 6. 

A number of relationships between the moments of F ( v )  and the 
moments of W(y) can be derived directly from Eqs. (1) and (2 )  by 
using the properties of the Hermite polynomials. These relationships 
together with the notations used are summarized in Table 2. 

FIG. 1. Unimodal and positivc definite regions in the P1-p2 planr for 
Gram-Charlier and Edgeworth Curves. 
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INSTRUMENT SPREADING CORRECTION IN GPC. II 489 

TABLE 2 

Nomendature and Relationships Among the Moments of the Raw and Corrected 
Chromatograms and the Instrument Spreading Function 

Nomenclature 

Raw Instrument spread- Corrected chromato- 
chromatogram F ( u )  ing function G(u-y) gram W(u) 

Parameter (moments about p) (moments about y) (moments about p )  

Unnormalized area A 
Normalized area 1 
Mean P 
Second moment m2 
Third moment m3 

Fourth moment m4 

1 
1 
0 
P2 
P3 

P4 

A 
1 
P 
m,* 
mf 
m: 

Moment Relation 

Zero 
First 
Second 
Third 
Fourth 

Area of unnormalized W ( u )  = Area of unnormalized F ( u )  
Mean of W(u) = Mean of F(u)  

m: = m2 - pz 
m,* = ma - pa 
m: = mr - 6~2m2 4- 6p: - ~4 

To illustrate the general method used to derive these relationships, 
consider the third moment calculations. The third moment about zero 
elution volume is given by 

Expanding and integrating term by term yields 
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490 E. M. ROSEN AND T. PROVDER 

Expressing Eq. (12) in terms of moments about the mean results in the 
following relation 

rn; = ma - p3 (13) 

3. THE FOURIER TRANSFORM METHOD 

Equation (1) is an integral equation of the convolution type and 
classically has been solved by means of Fourier transforms. This trans- 
formation is performed because the relationship can be reduced to  a 
simple algebraic expression in the transformed k-space. Following Tung 
(3), the Fourier transform of both sides of Eq. (1) yields the relation 

W ( k )  = (I /27r) '"[F ( k )  / G  ( k ) ]  (14) 

where 

and 

F ( k )  = F,(k) + iF i ( k )  
G ( k )  = Gr(k) + iGi (k)  
W(k)  = W,(k) + iWi(k) 

Use of Eqs. (18), (19), and (20) in Eq. (14) leads to  the following rela- 
tions for W,(k)  and Wi(lc) 

Once W ( k )  is determined, W(v) can be obtained from 

~ ( v )  = (1/27r)1/* ~ ( k )  exp ( - ikv)  dv (23) 

Upon noting that W,(k) a id  Wi(k)  are even arid odd functions, respec- 
tively, in k-space, W(v) can be expressed in terms of W,(k) and Wi(k)  
by the equation 
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INSTRUMENT SPREADING CORRECTION IN GPC. II 49 1 

W(V)  = ( 1 / 2 ~ ) ” ~  [U’r(k) COS (kv) + W,(k) sin (kv)] dk (24) 

The operational procedure used for the determination of W(v) con- 
sists of the following steps. First, F,(k) and Fi (k )  are numerically evalu- 
ated from the normalized observed ehromatogram F ( v ) .  

F&-) = ( 1 / 2 ~ ) * / ~  F(v )  cos (kv) dv 

Fi (k )  = ( 1 / 2 ~ ) ” ~  /--* F ( v )  sin (kv) dv (26) 

Gsing the generating function of Table 1 and Eqs. ( 5 ) ,  (6), and (7) in 
Eqs. (16) and ( IY ) ,  analytical expressions are obtained for G r ( k )  and 

G 4 k )  = ( 1 / 2 ~ ) ~ / *  exp (-k2p2/2)[1 -I- (k4/24)(p4 - 3 ~ 3 1  (27) 
Gi(k )  = ( 1 / 2 ~ ) ~ / ~  exp ( - k 2 p 2 / 2 ) [ -  k3p3/6]  (28) 

Upon knowing or assuming valucs for p2, p3, and p4, G‘,(k) and Gi(k)  
are evaluated and then W,(k) and Wi(k)  are obtained from Eqs. (21) 
and (22). Finally, W(v) is evaluated from Eq. (24). 

Although the parameters p2, p3, and p4  are assumed to be constants 
or slowly varying functions of the elution volume v during the integra- 
tions, in general they shall be considered to be strong functions of the 
elution volume v in the evaluation of W(v).  In general, G ( k )  and W ( k )  
then will both be functions of v. This inconsistency will remain a limita- 
tion of the method, particularly when pp, p3, and p4 are no longer slowly 
varying functions of U. Sote, however, regardless of the nature of G ( k ) ,  
P ( k )  needs to be evaluated only once because i t  is only a function of the 
observed chromatogram. 

G i ( k ) .  

4. NUMERICAL PROCEDURES 

The evaluation of the integrals in  Eqs. (25) and (26) have been the 
subject of considerable numerical investigations (9, 10). Tung (3)  used 
the discrete Fourier transform (DFT), which considers the integrals 
as infinite sums.* Thc fast Fourier transform (FFT) is an efficient 
method for the evaluation of the DFT when the number of data points 
tends to be very large. However, for GPC data the sampling interval 
is not excessively small nor is the range of elution volumes very large. 
Htmcc, the integral form can be used without excessive computational 

* Examination of the Fortran computer program supplied by Dr. Tung indicated 
the use of the DFT. 
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492 E. M. ROSEN AND T. PROVDER 

work. In  order to evaluate Eqs. (25) and (26), the range of integration 
must be transformed to some convenient point about the center of the 
chromatogram, vo, which is an even multiple of the increment size used 
in k-space. Upon letting 

z = u - u o  (29) 

(30) 

(31) 

Fl (k )  = (1/2?r)’l2 F ( z )  COS ( k z )  dz (32) 

Eqs. (25) and (26) become 

Fr(k) = cos (kvo)Fl(k) - sin (kvo)Fz(k) 

F i ( k )  = cos (kv0)F2(k)  + sin (kvo)Fl(k) 
and 

where 

Under this transformation Eq. (24) becomes 

W(V)  = ( 1 / 2 ~ ) ~ / ~  [Wl(k) cos ( k z )  + W2(k)  sin ( k z ) ]  dk (34) 

where 

Equations (32) and (33) are evaluated by breaking F ( z )  into small 
straight-line segments and analytically integrating over the segments. 
This technique is known generally as the Filon Quadrature ( 1 1 ) .  For 
example, for the j t h  interval let Fj( z )  = nj + bjz. For N data points 
(not necessarily equally spaced), Eq. (32) becomes 

F l ( k )  = ( 1 / 2 ~ ) ~ / ~ / 3 ’  (ai/k)[sin (kzj+l) - sin (kz j ) ]  
j = 1  

- cos (kzj) - kzj sin (kzj)] k Z 0 (37) 1 
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INSTRUMENT SPREADING CORRECTION IN GPC. II 493 

In  practice, both F l ( k )  and F,(k) are evaluated a t  equal intervals 
of k. By noting that F , ( k )  = F l ( - k )  and F&k) = - F s ( - k ) ,  the evalua- 
tion starts a t  k = 0 and simultaneously proceeds out in the positive and 
negative directions in k-space. The actual interval used in k-space varies 
because it is dependent on the value of k,,, required for the evaluation 
of F , ( k )  and Fs(k) .  Generally, the intervals in k were in the range ?r/600 
- < Ak 5 ?r/20. Since equal increments in k-space were selected, i t  was 
convenient to avoid multiple evaluations of the sine and cosine functions 
by means of expressions such as 

sin (ki+lzj) = sin (kizj f Akzj) 
= sin (kizj)  cos (Akzj)  4- cos (kizi) sin (Akzj) (38) 

One of the major difficulties of the entire method, however, was 
determining the value of k,,, out to which F ( k )  should be evaluated. 
When F(v )  is a smooth analytical function, the magnitude of F ( k )  goes 
to zero very smoothly as [ k ]  increases. Therefore j F ( k ) ]  can be monitored 
and the generation terminated when iF(k)  1 becomes suitably small. 
However, when F ( v )  is actual experimental data, no such smooth be- 
havior is encountered. In  fact, rather slowly undulating oscillations 
are encountered as Ikl increases. This is due to  two factors: (a) Noise 
and oscillations actually are present in F ( v ) ;  and (b) whenever a dis- 
continuity appears in F(v ) ,  due to the fact that the experimental data is 
chopped off a t  some arbitrary point before having a chance to  approach 
zero asymptotically, oscillations will appear in the transform. Taking 
the transform of any simple function which is nonzero within a finite 
interval and zero outside of the interval will illustrate tjhis point (1 2). 

It is very difficult indeed to separate these two effects and determine 
the value of [kl a t  which to terminate the evaluation of F ( k ) .  If the 
numerical evaluation of F ( k )  is performed out to values of Ikl that are 
too large, round-off errors will predominate because F ( k )  is divided by 
G ( k ) ,  which itself goes to zero, resulting in a 0 . calculation. Termina- 
tion of the evaluation of F ( k )  at values of [kl that are much too small 
will give poor results because much of the information is lost. Tung (3) 
used an empirical rule to determine the value of k,,, and indicated 
that the results could be improved by varying this value for the particu- 
lar problem. 

A theoretical upper limit on k,,, as given by the sampling theorem is 

kmax = T/AV (39) 

where AV is the sampling interval. Some studies ( I S )  have indicated that, 
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494 E. M. ROSEN AND T. PROVDER 

in practice, this should be closer to o.l(~/Av). However, a hard and fast 
rule appears difficult to ascertain. 

A number of approaches has been suggested to overcome this prob- 
lem (10). One approach is the use of a “spectral window” (10) to provide 
a weighting factor to force the tails of the chromatogram to approach 
zero smoothly. The use of a spectral window will be discussed further 
in Section 8 as well as the method used in practice to determine k,,,. 

The evaluation of G(k) is made over the same range of k as used to 
determine F ( k ) .  After W(k)  is evaluated, W(v) is calculated using the 
same quadrature method that was used to evaluate F(k). The spacing of 
the W(v) function in v-space is determined by the spacing that was used 
in k-space. Generally, F(v)  curves covering narrow ranges of elution 
volume require evaluations in k-space out to large values of k (a coarse 
k-spacing) which in turn require very fine spacing in v-space for the 
W(v)  calculation. In this work, spacing was based on fractions of 600. 
Thus if the interval in k-space was r/75, then spacing in the corrected 
u-space was at count increments of 1/12. 

5. THE CALIBRATION CURVE 

Yau and Malone (2) derived a theoretical expression describing a 
relationship between molecular weight and elution volume. Their equa- 
tion is of the form 

B I 

ELUTION VOLUME COUNTS) 
A+B 

FIG. 2. Illustrative GPC calibration curve. 
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INSTRUMENT SPREADING CORRECTION IN GPC. II 495 

U = A + B { ( l / d & ) [ l  - exp (-V)l + erfc (+)I (40) 

rl, = M D / C  (41) 

where 

The form of Eq. (40) has the characteristics of experimental GPC 
molecular weight calibration curves and has a number of convenient 
mathematical properties. If A ,  B, C, and D are treated as parameters, 
then Eq. (40) can be used to fit experimental molecular weight vs count 
data. 

The value of A ,  once determined, is the effective exclusion volume 
and A + B is the total volume as indicated in Fig. 2 taken from Ref. 14. 
If sufficient data are not present in the steep portions of the curve a t  
very high and very low elution volumes to determine A and R ade- 
quately, then this physical significance is lost. 

Calibration curves such as shown in Fig. 2 are arbitrary to the extent 
that a particular molecular weight average such as ATv, aw or (a, . Bn) f 

0 POLYSTYREWE 1.009s P W  s 1.26 
STANDARDS 

FITTED CURVE 

MEV (COUNTS) 
FIG. 3. Molecular weight calibration curve for polystyrene standards. 
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496 E. M. ROSEN AND T. PROVDER 

is associated with the peak elution volume (PEV) or mean elution 
volume (MEV). 

Whatever is used, nevertheless, appears to be satisfactorily fit with 
Eq. (40). Figure 3 is a plot of the data given in Table 3 in which 
(ATn . a,)! is plotted vs MEV. Values* of A ,  R, C, and D were deter- 
mined from a nonlinear least squares fit (15, 16) of the data and are 
shown in Fig. 3. 

Pickett, Cantow, and Johnson (17) have shown that B,, and Mw can 
be evaluated from 

a,, = [ 1"" M L  ( l /M) (da /dM)  dM1-l (42) 

M m  = M(da/dM) dM (43) 

where 

TABLE 3 

Stat.istjcaI and Molecular Weight Data for Polystyrene 
Standards Based on Kormalized Chromatograms at Iml/min Flow Rate 

Runa 10-3M,(t) 10-3#,(t) P ( t )  MEV ma m3 m4 

181-189 
181-190 
181-188 
181-187 
181-186 
181-184 
181-183 
184-211 
184-210 
180-1 82 
184-209 
180-180 
184-208 
184-207 
180- 179 
180-178 

1610 
1780 
773 
404 
392 
170.9 
164 
160.6 
95.1 
96.2 
42.12 
19.65 
16.35 
9.91 
9.70 
3.18 

1900 
2145 
867 
507 
411 
179.3 
173 
162 
96 
98.2 
42.5 
19.85 
16.5 
10.0 
10.3 
3.53 

1.18 
1.21 
1.12 
1.26 
1.05 
1.05 
1.05 

- <1.009 
1.02 

- <1.009 
- <1.009 

1.01 
11.009 
- <1.009 

1.06 
- <1.11 

24.65 
24.67 
25.31 
26.27 
26.84 
28.52 
28.68 
28.71 
29.88 
29.90 
31.56 
33.32 
33.61 
34.57 
34.73 
36.78 

2.487 
2.463 
1.686 
1.801 
I .  833 
0.933 
0.642 
0.649 
0.556 
0,540 
0.524 
0.600 
0.406 
0.318 
0.662 
0.766 

5.833 
5.690 
3.458 
3.164 
3.390 
0.457 
0.473 
0.479 
0.350 
0.335 
0,450 
0.135 
0.128 
0.0471 
0.283 
0.276 

33.05 
31.61 
17.25 
17.36 
19.06 
4.224 
2.119 
1.927 
1.268 
1.394 
1 ,603 
1.212 
0.572 
0.316 
1.701 
1.863 

Refer to (I.) for the commercial sources of the polystyrene standards. 

* A Fortran IV computer program which makes use of Marquardt's algorithm 
to solve a set of nonlinear equations can be found in Ref. 16. 
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INSTRUMENT SPREADING CORRECTION IN GPC. I f  497 

The first term on the right-hand side of Eq. (44) is the normalized 
baseline-adjusted chromatogram height at elution volume v,, where 

C(v,) is the raw chromatogram height a t  v, and IVL C(v)  dv is the 

area of the raw chromatogram. The second term on the right-hand side 
of Eq. (44) is the reciprocal of the slope of the calibration curve, f(v) = 
loglo M. Equation (44) can be expressed as 

V E  

(da/dM) = - [C(v,)/area](dv/dM)vM (45) 

(46) 

From Eqs. (40) and (41) 

(dv/dM)vM = -(DB/#M &)[1 - exp (-@)I 
Since B, C ,  and 1) are always positive, (dv/dM)vM is always negative. 
Throughout this paper, M n  and M w  are determined by means of Eqs. 
(42), (43), (45), and (46). 

6. EVALUATION OF THE INSTRUMENT SPREADING PARAMETERS 

Before the Fourier transformed instrument spreading function de- 
fined by Eqs. (27) and (28) can be evaluated, i t  is necessary to determine 
the values of pz, p3, and p4  as a function of elution volume. In principle, 
these parameters can be determined from a knowledge of Mn( t ) ,  MW(t), 
and [ ~ ] ( t )  or s,(t). However, in this paper it shall be assumed that only 
M,(t) and u,(t) are available. In addition an assumption shall be made 
regarding the nature of the corrected chromatogram for narrow MWD 
standards. 

If the chromatograms of the characterized standard polymer samples 
cover narrow ranges of elution volume, it can be assumed that (a) pz, p3, 

and p4 are slowly varying functions of elution volume and will be reason- 
ably constant over this elution volume range, and (b) the calibration 
curve will be reasonably linear over this elution volume range. Under 
these assumptions, i t  has been shown in (I.) that the following correction 
equations are applicable. 

where 
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Dz is the slope of the log, M vs elution volume calibration curve a t  a 
specified elution volume vs and is given by 

Dz = (d log, Mldv)., = [M(dv/dM)..]-' (52) 
In terms of the parameters of the Yau-Malone function, D2 is expressed 
as 

DZ = - ( G + / D B ) [ l  - exp (-Y)]-' (53) 
Addition of Eqs. (47) and (48) results in an expression for the funda- 
mental parameter a. 

Subtracting Eq. (48) from Eq. (47) and combining the result with Eq. 
(54) yields an expression for the fundamental parameter PI. 

fi = (6/a3)[1 + (a4/24)(Pz - 3)] 
x {-- [ f in(O/Bn(w)I - m i . c w ) / ~ w C O l )  (55) 

[Mn(O/Bn( a~ > I  + [ato(w)/aw(OI 
Equations (54) and (55) are two equations in the three unknowns a, 
PI, and b2. For the third equation, consider the relationship between the 
fourth moment of the observed and corrected chromatogram as shown 
in Table 1. 

m; = m4 - 6mmz + 6 d  - 1 r 4  (56) 

If the corrected chromatogram for the standard is assumed to be nearly 
Gaussian in shape, then mz = 3mi. Using this assumption along with 
the relation rn*, = m2 - pz in Eq. (56) results in 

p4 - 3pi = m4 - 3mg (57) 
Combining Eq. (57) with Eqs. (49) and (51) leads to the necessary third 
equation 

(a4/24)(8z - 3) = (D,4/24)(m4 - 3m:) (58) 
Use of Eq. (58) in (54) and (55) leads to expressions for a and 01 in 
terms of quantities that can be determined by measurement or calcula- 
tion. 
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d fi = 6[1 + (0;/24)(mr - 3 d ) l  

It is important to note that a is negative due to the negativity of D2 in 
Eq. (49). 

The calibration procedure to obtain pz, p3, and p4 as a function of 
elution volume is described below. The raw data of the standards used 
in this procedure are the data shown in Table 3 along with the corre- 
sponding raw elution volume curves. The experimental GPC conditions 
and procedures used for the generation of the raw chromatograms have 
been described previously in (I.). 

(a) The raw a,(t) vs MEV and Mw(t) vs MEV data sets in Table 
3 are each fit to the functional form of the Yau-Malone Eq. (40). The 
smooth values a,,(t)# and aUl(t)* are calculated from the fitted functions. 
The results are shown in Table 4 with the subscript s denoting smooth 
values. 

(b) The infinite resolution molecular weight calibration curve is 
obtained by using Eq. (40) to fit [a,(t) .A?w(t)]1’2 vs MEV data. Values 

TABLE 4 

Smooth Values of Molecular Weight for Polystyrene Standards 
~~~ ~~ 

Run MEV lO-3a,,(t), 10-a#,(t), P(t) ,  10-3u,( m), lO-SE,,,( m), P (  m), 

181-189 24.65 1510 1780 1.18 925 3090 3.34 
181-190 24.67 1490 1740 1.17 913 3020 3.31 
181-188 25.31 934 1100 1.18 661 1580 2.39 
181-187 26.27 513 576 1.12 408 725 1.78 
181-186 26.84 372 418 1.12 317 490 1.55 
181-184 28.52 166 174 1.05 152 186 1.22 
181-183 28.68 155 162 1.05 142 173 1.22 
184-211 28.71 152 158 1.04 141 170 1.21 
184-210 29.88 89.2 92.7 1.04 85.1 96.8 1.14 
180-182 29.90 89.2 92.5 1.04 85.0 96.2 1.13 
184-209 31.56 43.7 43.8 1.002 41.7 44.7 1.07 
180-180 33.32 19.5 19.6 1.005 18.6 20.4 1.10 
184-208 33.61 17.0 17.1 1.006 15.9 17.8 1.12 
184-207 34.57 10.5 11.0 1.05 9.55 11.2 1.17 

10.5 1.18 180-179 34.73 9.78 10.0 1.02 8.91 
180-178 36.78 2.89 3.24 1.12 2.40 3.39 1.41 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



500 E. M. ROSEN AND T. PROVDER 

of the Yau-Malone parameters are given together with the fitted curve 
in Fig. 3. 

(c) The infinite resolution calibration. curve and the raw chrornato- 
grams of the standards are used to calculate an( a) and Bw( a). These 
values are again smoothed by fitting to Eq. (40). Values of an( and 
aw( 

(d) The values of @n( t )8 ,  i@w(t)8, i@n(a)8, and i@w(a)8 together 
with the statistics of the standards given in Table 3 are used to find the 
value of a2 from Eq. (59) at each MEV. Equation (53) is used to evaluate 
D2 at each MEV. Plots of CY and C Y ~  vs MEV are shown in Fig. 4 and a 
plot of D2 vs MEV is shown in Fig. 5. 

(e) Values of p2 are calculated at equal increments of elution volume 
using Eq. (49) and Fig. 5. These results are given in Table 5 and plotted 
in Fig. 6. 

(f)  Values of fi are calculated at  each MEV using Eqs. (60) and 

are shown in Table 4. 

0.8 

0.7 

0.6 

0.s 

a* 
0.4 

0.3 

0 . P  

0. I 

9 

J-0 .2  

- -0.3 
- -0.4 

a - -0.5 

- -0.6 

- -0.7 

- -0.6 

25 Z 7  29 31 33 35 37 

MEV (COUNTS) 
FIG. 4. a and a' vs MEV. 
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I I I I I I I 
- 0.3 - - 
- 0.4 - - 

- 0.5 - 

I I 1 I I I I 
23 25 21 29 31 33 35 37 

MEV (COUNTS) 
FIG. 5. D, VS MEV. 

TABLE 5 

Interpolated Values of PZ, p3, and p4 a t  Equal Increments of the Mean Elution Volume 

MEV PZ P3 P I  

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

0.825 
0.950 
1.05 
1.05 
0.927 
0.750 
0.593 
0.465 
0.397 
0.370 
0.425 
0.510 
0.550 
0.595 
0.580 

0.970 
0.695 
0.270 
0.160 
0.047 
0.00 
0.0145 
0.0346 

- 0.0750 
-0.213 
-0.500 
-0.890 
-1.18 
-1.52 
-1.63 

19.1 
19.0 
17.1 
13.2 
8.15 
4.32 
2.22 
1.15 
0.706 
0.550 
0.650 
0.859 
0.966 
1.10 
1.01 
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MEV (CoUruTS) 

FIG. 6. mz and VS MEV. 

(53) and Fig. 4. Then values of pa at equal increments of elution volume 
are obtained from a plot of fi vs MEV in Fig. 7, Eq. (50), and Fig. 6.  

(f) Values of p3 at equal increments of elution volume are given in 
Table 5 and plotted in Fig. 8. 

(g) Values of 0 2  are calculated at each MEV from Eqs. (58) and (53) 
and Fig. 4. Then values of p4 at equal increments of elution volume are 
obtained from a plot of o2 vs MEV in Fig. 9, Eq. (51), and Fig. 6. Values 
of ~4 a t  equal increments of elution volume are given in Table 5 and 
plotted in Fig. 10. 

Several points in the above procedure are worthy of note. (a) The 
smoothing operations on Bn(t), A?,Jt), Bn( a), and i@,J a) eliminated 
much of the scatter in the plots of p2, p 3 ,  and p4 vs MEV. (b) The entire 
calibration procedure was rather arbitrary because, in principle, #,( t )  vs 
PEV could have been used instead of [an(t) . &fW(t)]f vs MEV. However, 
use of A?f,(t) vs PEV gave less satisfactory numerical values of PI. 

The rather surprising shape of the p2 vs MEV curve in Fig. 6 can 
perhaps be justified by plotting values of m2 on the same plot. Since 
rn: must always be positive, this implies that m2 > p2. With the excep- 
tion of two points of the ultranarrow recycle polystyrene standards, the 
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-0.6 - 

-1.0 - 

A 
-1.5 - 

-2.0 - 

-2.5 - 

-3.0 - 

-3.5 - 

------------- 

0 1.01 S P(?) S 1.26 

23 25 27 29 31 33 35 37 

MEV (COUNTS) 

FIG. 7 . f i  vs MEV. 

values of m2 are, in fact, greater than p2 within experimental errors. 
Similar reasoning can be applied to Fig. 10. Since m: > 0, it follows 

from Eq. (56) that 

m; + p4 = m4 - 6 4 2 7 1 1 2  4- 6 d  > p4 

Generally, m: 2 0.03 over most of the elution volume range. There- 
fore, Eq. (61) holds. Figure 10 illustrates that, generally, m: << ,.t4 

because many of the experimental data points are almost indistinguish- 
able from the p4 curve. 

It is difficult to assess the effect of the use of the approximation given 
by Eq. (55) except to note that, generally, D:(m4 - 3mi)/24 << 1. 

(61) 
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MEV (COUNTS) 
FIG. 8 .  es vs MEV. 

However, when ID21 begins to climb rapidly in the low MEV region, the 
above inequality is no longer valid and the approximation made in 
Eq. (58) may introduce serious errors in the determination of p2, p 3 ,  
and w4.  

and /& fall out- 
side the unimodal and positive definite regions of the Gram-Charlier 
curves as indicated in Fig. 1. However, this does not necessarily mean 
that the instrument spreading function is predicting unrealistic values 
over the elution volume range of the sample. Unrealistic values of 
G(u-y) that do occur over the elution volume range of the sample may 
be so small that they have no practical significance with respect to the 
values of W(v) generated by the numerical Fourier transform method. 
Consider, for example, that the normalized observed chromatogram 
can be described by the skewed Gaussian function 

Over some regions of elution volume the values of 
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1 I I I I I 

- 
A P(t)  5 1.009 

0 1.01 S P( t )S  1.26 - 

- 

5- 

t I I I I I I 
23 25 27 29 31 33 35 37 

MEV (COUNTS) 
FIG. 9. p2 VS MEV. 

(66) 
Equation (66) contains an exponential in rn; multiplied by a ratio of 
polynomials in the parameters PI and p2 through the coefficients A t  and 
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I 1 I I I 1 

- 
0 

- 

Ad, and in the parameters m3 and m4 through the coefficients Ct and 
C4. If m, (m2 = mz - p z )  is large, i t  is not necessary to go out too far 
in k-space in order for the exponential term to wash out the effect of 
the bracketed term in Eq. (66) and force IW(k)I to  go to  zero. On the 
other hand, when rn; is small, i t  is necessary to go out farther in k-space. 
Then, the effect of noise in the numerical F(v)  data and round-off errors 
tend to  be greatly magnified a t  large values of k and prevents IW(k)l 
from going to  zero. If 1W(k)/ is poorly bounded, W(v)  will tend to  have 
unrealistic values manifested by large positive and negative oscillations. 

* *  

7. TEST RESULTS--ANALYTICAL DATA 

In  order to  check the numerical procedures used in the Fourier trans- 
form method, two analytical functions were chosen for study. The 
first test function was designed to check the functioning of the dispersion, 
skewing, and flattening parameters. The observed chromatogram was 
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described by a skewed Gaussian function which transformed to a cor- 
rected chromatogram that was described by a pure Gaussian function. 
The pure Gaussian function in k-space is, given by 

W(k)  = (1 /2~) ’ /~  exp (-k2m;/2) (67) 

Using Eqs. (27),  (29, and (14), the following expression can be derived 
for F(v) 

FW = ( 1 / 2 m ~ ~  exp [- (v - ~)*/2m21{ 1 + (P8/h:’2)H8[(v - P>/&I 

+ { ( ~ r  - 3~22)/24&)Hi[(v - P ) / ~ G ]  (68) 

where 

mz = m‘2 + PZ 
F(v) was generated over the range 18 I v I 4 2  about p = 30 with 
AV = 0.1. 

Equation (67) immediately suggests a method for determining a 
means of estimating the value of k,,, in k-space out to which F ( k )  
should be evaluated. If k,,, is such that exp (-k2m*/2) = 5 X 1W6, 
then 

(69) 

k m s x  = I-2 log, (5  x 10-5)/(mz - P Z ) ] ~ ”  (70) 

This was the method used to estimate k,,, throughout this paper. If 
1F(k) I reached a minimum value of 5 X lC5 before k,,, was encountered, 
then that value of k was the largest value of k used. 

Table 6 illustrates the performance of the numerical procedures used 
in the computer program to transform the test F(v )  function in Eq. (68) 
to the corrected Gaussian function for varying values of nt;. As m* 
decreased the value of k,,, increased, and larger values of Ak were 
required to proceed to the desired value of k,,, because a fixed number 
of computer storage locations were allotted for Ak-increments in k-space. 
In all cases the minimum value of IF(k)l was encountered before kmaX 
was reached. When m; was small, this resulted in [W(k) ) ,  the critical 
quantity, being too large at  the termination of the generation. Conse- 
quently, there was a loss in the accuracy of the computation as measured 
by the statistics. 

It can be argued that a better procedure would be to always allow 
the computation of F ( k )  to proceed until k,,, is encountered. However, 
very small values of IF(k)l would be used and roundoff and integration 
errors would begin to predominate. With the above method there is a 
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TABLE 6 

Results for Analytical Test Functions 

Test function, Eq. (68), ~8 = -0.7, PC = 4.5, Tung’s 
6xed values of m: function 

Statistic 1.0 0.5 0.3 0.1 H = 0.4 
Eq. (71) 

Raw0 area 1.0000 1.0000 1.0000 0.99999 0.99999 
Correctedb area 0.99977 1.0003 1.0025 1.0266 0.99959 
Raw MEV 30.000 30.000 30.000 30.000 27.40 
Corrected MEV 30.000 30.000 30.000 30.000 27.39 
mz 2.0000 1.5000 1.3000 1.1000 16.49 
P2 1.0000 1.0000 1.0000 1 .OoOo 3.125 
Predictedc m: 1.OOOO 0.50000 0.30001 O.lO003 13.37 
Corrected m: 1.0031 0.50442 0.31519 0.11245 13.60 
ma -0.69952 -0.69980 -0.69972 -0.69984 10.37 
Pi -0.7 -0.7 -0.7 -0.7 0 
Predicted m: 0.00048 0.00019 0.00028 0.00016 10.37 
Corrected m: 0.00017 0.000058 0.000016 0.000003 10.32 
mr 13.500 8.2510 6.5696 5.1298 679.64 
P I  4.5000 4.5000 4.5000 4.5000 29.29 
Predicted m: 2.9998 0.75098 0.26960 0.029583 399.60 
Corrected m: 3.0555 0.76979 0.34160 0.029843 397.28 
k-= from Eq. 4.94 6.98 9.02 15.62 1.35 

(70) 
Ak r/50 r/40 7/30 T/20 7/20 
IF(k)Imind 5 x 10-8 5 x 10-6 5 x 10-6 5 x 10-6 5 x 10-6 
k-, used. 3.39 4.00 4.39 4.86 1.35 
IW(k)I a t  ksx used 0.00125 0.00713 0.0215 0.119 0.00334 

All the statistics preceded by the word “raw” are those calculated from F(u),  the 

All the statistics preceded by the word “corrected” are those calculated from the 

All the statistics preceded by the word “predicted” are those calculated from the 

lF(k)lmin was set equal to 5 X 10-6. 

normalized observed chromatogram. 

W(u) obtained from F(u) by the numerical Fourier transformation procedures. 

relations in Table 2. 

a kaX used refers to the actual largest value of k used to evaluate F ( k ) .  

limitation on the value of m: that can be handled with accuracy. With 
experimental data the value of k,,, is always used because noise and 
oscillations prevent IF@) I from ever reaching any reasonably small 
minimum value of IP(k)l. Figure 11 is a plot of F(v ) ,  the true W(v),  and 
the calculated W(v) obtained from F ( v )  for the case where m*, = 0.3, 
p2 = 1.0, pa = -0.7, and p4 = 4.5. 
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COUNTS 

FIG. 11 .  Test function-skewed Gaussian for mf = 0.3, p2 = 1, pa IZ -0.7, 
p i = 4 . 5 :  --F(v) from Eq. (68), -& corrected W ( v ) .  Xote true values 
of W ( v )  calculated from Gaussian function are not shown because they 

arc coincident with the corrected values. 

The second function studied was suggested by Tung (3) and is 

(0 .325)2H2(~  - 25)'] 
(0.6 exp [ - (0.325)2 + H 2  

0 . 3 2 5 8  
4 ~ [ ( 0 . 3 2 5 ) ~  + H2] 

F(v)  = 

[ (0.325)2H2(v - 31)2 
(0.325)2 + H 2  + 0.4 exp - 

with H = 0.4. Kote that 

The corrected chromatogram is 

0 325 W(v) = - 
%A 

X l0.6 exp [-(0.325)2(v - 26)23 + 0.4 exp [- (0.325)2(v - 31)2 ] )  (73)  

F(v )  was generated over the range 12 5 v 5 44 with AV = 0.1. The 
numerical results for this case are also shown in Table 6. A plot of F ( v ) ,  
the true W(v),  and the calculated W(v) obtained from F(v )  are shown in 
Fig. 12. 
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COUNTS 

FIG. 12. Tung’s analytical test function for H = 0.4, p0 = 0, = 2929: 
- -F(v) from Eq. (711, f corrected “(U). Xote true values of W ( v )  
calculated from Eq. (73) are not shown because they are coincident with 
the corrected values. 

8. TEST RESULTS-EXPERIMENTAL DATA 

In order to test the method on actual experimental data, five samples 
were selected. The first was a broad MWD standard. The other four 
were mixtures prepared by mixing three of the calibration standards 
together in various proportions by weight. The resulting polyblends 
were narrow in MWD and distinctly multimodal. These five samples 
are described in Table 7. 

Since the raw data tended to be noisy at  the tails, the “spectral 
window” shown in Fig. 13 was used to smooth the tails of the chro- 
matogram. The window used was an extended cosine-bell data window 
(10). This window generated a “factor” between 0 and 1 by which the 
raw data was multiplied over the first and last 10% of the total number 
of data points. The middle SO% of the total number of data points was 
unchanged. 
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TABLE 7 

Composition and Molecular Weight Data for Experimental Test Samples 

181-185 NBS-706 136.5 257.8 1.889 
196-302-1 0/50/50 64.9 74.6 1.15 
196-305-1 75/25/0 23.1 27.6 1.20 
196-306-1 25/75/0 35.6 43.2 1.21 
196-308-1 16.7/33.3/50 48.8 69.4 1.42 

a All samples were run a t  a flow rate of 1 ml/min. 
* The wt% of each polystyrene standard in the mixture refers to the standards with 

c The true values, n?,(t), E&), and P(t) of the mixtures were calculated from the 

The distance in k-space, out to which F ( k )  was evaluated, was deter- 
mined from Eq. (70) with pt evaluated a t  the MEV of the sample. 
Values of W(v),  which were generated out in each direction from vo, 
generally became negative at the ends of the chromatogram. If more 
than five negative values were encountered, this was used as an indica- 
tion to terminate the evaluation of W(v) .  However, this criterion allowed 

the run numbers in the following order: 180-180, 180-181, and 180-182. 

true values of the individual components and compositions of the mixtures. 

I -  

0 - O.IN - 
FIG. 13.  An extended cosine-Bell data window. 
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COUNTS 

FIG. 14. Observed {--F(v)} and corrected {a, W ( v ) )  chromatograms for 
sample 181-185. 

the generation of completely separated peaks. All negative values of 
W(v) were set equal to zero. 

Figures 14-18 are plots of F ( v )  and W(v) for the samples shown in 
Table 7. The variations of the p2, p3, and p4 with elution volume that 
were used in the calculations are given in Table 5. Linear interpolation 
was used between the tabulated points. 

Values of a,,( w ) and am( w ) obtained from the calibration curve of 
Fig. 3 and the observed chromatogram F(v ) ,  and values of an(& and 
i%fm(QW obtained from the corrected chromatogram W(v) and the calibra- 
tion curve of Fig. 3 are shown in Table 8. For comparison purposes 
the values of pzr p3, and p4 were evaluated at  the MEV’s and were subse- 
quently used to evaluate a n ( t ) E  and a m ( t ) E  from Eqs. (47) and (48). 

As can be seen from a study of Table 8, the areas of W(v) are almost 
always consistently higher than those of F ( v ) .  When the parameters 
pzl p3, and p4 are functions of elution volume, it is difficult to prove 
mathematically that the area of the raw chromatogram is equal to the 
area of the corrected chromatogram. From Eq. (1) 
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The use of the convolution theorem or a transformation of variables to  
interchange the order of integration with respect to IJ and v to prove the 
area equality requires the constancy of p2 with v. The same argument 
leads to the conclusion that none of the relationships of Table 2 strictly 
hold. However, it should be noted from Table 8 and Fig. 16 that in the 
case of sample 196-305-1, where the sample was in the range of rea- 
sonable constancy of the pCln’s, the areas indeed gave a reasonable 
check. From physical arguments the areas must check within exper- 
imental errors because the area under the chromatogram represents a 
certain number of milligrams of material that has passed through the 
GPC columns and the differential refractometer detector. 

Table 8 also shows that the evaluation of F ( k )  always proceeded out 
to the value of kmsx. The minimum value of \F(k)l  was not encountered 
first because of the noise and oscillations in the data. Since there was 

II 
I 

196-302-1 

W 5 0 /  5 0 )  

24.00 26.00 28.00 30.00 32.00 34.00 36.00 

COUNTS 

FIG. I S .  Observed {--F(v)} and corrected {Et, W ( v ) }  chromatograrns for 
sample 196-302-1. 
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COUNTS 

FIG. 16. Observed { - -F(v)}  and corrected (f3, W‘(v>} chromatograms for 
sample 196-305-1. 

considerable doubt that the value of k,,, used was adequate, the value 
of k,,, was increased for each of the samples to 135 times the value 
indicated in Table 8. Not much effect was observed in the broad MWD 
sample. However, greater resolution of the components in the 196-series 
of samples (small mi’s) was achieved. How realistic this increased 
resolution was is open to question. The “correct” value of k,,, to use is 
unresolved and remains a major area for further investigation. 

9. CONCLUSIONS 

Based on this study several conclusions can be made. 

(a) The instrument spreading function given by Eq. (5) is useful 
for characterizing the dispersion, skewing, and flattening effects en- 
countered in raw GPC chromatograms due to the imperfect resolution 
by the GPC columns. It is limited, however, to  applications where 
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COUNTS 

FIG. 17. Observed { -F(v ) }  and corrected {B, r ( V ) }  chromatograms for 
sample 196-3061. 

m: is large enough to ‘(wash out” large oscillations caused by large 
values of p1 and pz relative to the values of m2, m3, and m4. 

(b) The Yau-Malone function given by Eq. (40) is a flexible and useful 
equation for the fitting of molecular weight vs elution volume data. 

(c) The Fourier transform method, while it can be demonstrated 
to work well on analytically generated data, has a number of problems 
associated with it when applied to actual experimental data. At this 
time these problems appear to be associated with two major considera- 
tions: (1) It is not clear how far out in k-space to go in generating F ( k )  
and hence W(k) .  Equation (70), while probably qualitatively useful, 
does not appear to be adequate. (2) It is not clear how serious are the 
assumptions of the constancy of the parameters 1.42, p 3 ,  and p4 with elution 
volume in situations where they are reasonably strong functions of 
elutionvolume and/or the sample covers a broad range of elution volume. 

(d) The Fourier transform method is useful in qualitatively resolving 
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0 
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g 8  2 
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m 
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(16.7/33.3/50) 

v) a 

8 
cd 

0 
0 
d 
24.00 2600 20.00 30.00 32.00 34.00 36.00 

COUNTS 

FIG. 18. Observed {--F(v)} and corrected {B, W ( v ) )  chromatograms for 
sample 196-308-1. 

peaks. 
(e) The calibration procedure used, though arbitrary, gives values 

of the parameters p2, p3, and p4 which are physically reasonable. When 
the sample is a narrow MWD sample, then Eqs. (47) and (48) can be 
used, with parameters evaluated at the MEV of the sample, to evaluate 
i@,(t) and MW(t). When the samples are broad in MWD, the adequacy 
of Kqs. (47) and (48) are in doubt because of the variability of the pn's 
with elution volume. 

10. SUGGESTIONS FOR IMPROVEMENTS IN THE CALIBRATION 
AND NUMERICAL PROCEDURES* 

The use of Eqs. (47) and (48) tied together the determination of the 
instrument spreading parameters with errors in the determination of 

* N o t e  added in proof. Since this manuscript was written the iniprovements 
suggested in this section have been tried and have not been successful. A new 
numerical technique for correcting observed chromatograms, which eliminates 
some of the limitations of the Fourier Transform method, has been developed 
and will be published elsewhere (18) .  
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TABLE 8 

Results for Experimental Test Samples 

Run 

Statistic 181-185 196-302-1 196305-1 196-306-1 196-308-1 

lo-aXjn( m )  
10-3&( m )  
P ( m )  
1 0 - 3 ~  .(t lWa 
10-~n?~(t), 
P ( t ) w  
10-*il;in(t)&? 
10-3M,(t)~ 
P ( t ) B  
Raw area (smoothed)c 
Corrected aread 
Raw MEV 
m2 

pa at MEV 
Predicted rn3 
Corrected m: 
k,. from Eq. (70) 
Ak 
kmsx used/ 

133.3 
364.5 

137.2 
352.7 

144.0 
328.4 

2.72 

2.57 

2.26 
92.57 
94.35 
28.12 
3.928 
0.7311 
3.197 
3.670 
2.76 

2.73 
r/100 

69.0 
87.8 

74.0 
91.1 

71.8 
83.5 

1.27 
88.22 
93.81 
30.24 

1.28 

1.23 

1.192 
0.  4487 
0.7435 
1.045 
5.73 
r/40 
5.65 

25.7 
34.2 

26.8 
33.8 

26.6 
32.6 

1.22 
85.71 
84.28 
32.44 

1.33 

1.31 

1.400 
0.3940 
1 ,005 
1.133 
4.92 
r/50 
4.90 

38.8 
51.4 

43.7 
56.5 

40.0 
49.2 

1.22 
91.42 

31.46 
1.40 
0.3840 
1.017 
1.278 
4.89 
r/50 
4.83 

1.32 

1.29 

104.1 

51.5 
78.3 

56.2 
85.1 

53.5 
74.7 
1.40 

87.22 
94.43 
30.65 
2.11 
0.4200 
1.680 
2.090 
3.80 
r/60 

3.76 

1.52 

1.51 

All the statistics with a subscript w are those calculated from the corrected 

All the statistics with a subscripted E are those calculated from Eqs. (47) and (48). 
All the statistics preceded by the word “raw” are t.hose calculated from F ( u ) ,  the 

All the statistics preceded by the word “corrected” are those calculated from the 

All the statistics preceded by the word “predicted” are those calculated from the 

chromatogram W ( v ) .  

normalized observed chromatogram. 

W(v)  obtained from F(u)  by the numerical Fourier transformation procedures. 

relations in Table 2. 
J k,. used refers to the actual largest value of k used to evaluate F(k ) .  

the experimental values of a,, and M w .  It may be better to separate 
the determination of the instrument spreading parameters from the 
experimental values of M,, and M w  because these parameters should be 
dependent only on the flow behavior of the polymer molecules through 
the GPC columns. This may be done by assuming that Eqs. (62), (63), 
and (64) adequately describe the observed chromatogram of a nearly 
monodisperse standard. 

Then pz, p3, and p 4  are directly obtained from the moments of the 
F(v)  curve. 
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51 8 E. M. ROSEN AND T. PROVDER 

I.CZ = m2 (75) 
NI = ms (76) 
~4 = m4 

Plots of p ~ ,  p3, and p., vs MEV would then result. The plot of I . C ~  vs MEV 
would be qujte different from that obtained by directly using M,(t) 
and M,.,(t) data. This difference would be reflected in the molecular 
weight calibration curve to be determined by the method described 
below. 

Since F(v)  = W(v> for each MEV, then the Yau-Malone parameters 
can be sought such that i@n(t)u and are fit as closely as possible 
to the experimentally determined values of A?,(t) and i@,(t). In this 
way experimental errors associated with i@,(t) and i@,(t) would be 
smeared out over the entire calibration curve. 

A major source of difficulty in the numerical Fourier transform method 
is the determination of the proper value of kmnx at which to stop the 
evaluation of W(k) before the effects of noise in the numerical F(v)  
data and roundoff errors prevent 1F(k)l and thus IW(k)I from smoothly 
approaching zero. If F ( k )  can be fit by a function having a generalized 
form of the type shown in Eq. (65), then W(k) may be expressed by an 
analytical function of the form similar to Eq. (66), which appears to 
have better numerical properties in that IW(k)J will be forced to smoothly 
approach zero. As was shown previously, the Fourier transform method, 
indeed, does work well on analytically generated data. 
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list of Symbols* 

A ,  B, C, D parameters of the Yau-Malone nonlinear molecular 
weight calibration curve as defined by Eq. (40) and 
illustrated by Fig. 3 
intercept and slope parameters of a straight line seg- 
ment approximating F ( v )  over j t h  interval for the 
Filon Quadrature method 

aj, b j  

*Symbols and notation found in the text and not defined here have been 
previously described in (I.). 
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skewness and flatness coefficients of the analytical 
skewed Gaussian function described by Eq. (62) 
discrete Fourier transform 
fast Fourier transform 
minimum value of (F(k ) i  chosen as the point in 
k-space to terminate the evaluation of F ( k )  
value of F(v)  over j t h  interval approximated by 
straight line segment 
real and imaginary parts of the Fourier transforma- 
tion of the observed chromatogram F (v )  about vo as 
defined by Eqs. (29), (32), and (33) 
resolution factor as defined by Tung (3) and de- 
scribed by Eq. (72) 
Paper I of this series described in Ref. 1 
the maximum value of k in k-space out to which 
F ( k )  should be evaluated 
mean elution volume 
value of number-average molecular weight obtained 
from values of p z ,  p 3 ,  and p4 at the MEV used in Eq. 
(47) 
smoothed infinite resolution and true number- 
average molecular weights, respectively, by use of 
the Yau-Malone function, Eq. (40) 
number-average molecular weight calculated from 
corrected chromatogram, W(u) 
value of weight-average molecular weight obtained 
from values of pz, p3 ,  and p4 at the MEV used in Eq. 
(48) 
smoothed infinite resolution and true weight- 
average molecular weights, respectively, obtained 
by use of the Yau-Malone function, Eq. (40) 
weight-average molecular weight calculated from 
corrected chromatogram, W(v) 
second, third, and fourth moments about the mean 
of the corrected chromatogram, W(v) 
value of the polydispersity ratio obtained from the 
values of pz,  p3, and p4 a t  the MEV used in Eqs. (47) 
and (48) 
smoothed infinite resolution and true polydispersity 
ratio, respectively 
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2 

Greek Letters 

ff 

P l , P 2  

polydispersity ratio obtained from the corrected 
chromatogram, W(v)  
elutiori volume a t  center of the chromatogram about 
which to transform the range of integration in Eqs. 
(25) and (26) 
specified elution volume a t  which (dv/dM).,  is to be 
evaluated 
third moment about the origin of the normalized 
observed chromatogram 
third moment about the origin of the normalized 
corrected chromatogram 
real and imaginary parts of the Pourier transforma- 
tion of the corrected chromatogram W(v) about v as 
defined by Eqs. (29), (35), and (36) 
transformed variable defined by Eq. (29) 

reduced parameter defined by Eq. (49) 
reduced parameters of G(v - y) function defined by 
Eqs. (6) and (7) 
mean elution volume 
reduced parameter of Yau-Malone function defined 
by Eq. (41) 

REFERENCES 

1. T. Provder and E. M. Rosen, Separ. Sci., 5, 437 (1970). 
2. W. W. Yau and C. P. Malone, J. Polym. Sci., Part B, 5,663 (1967). 
3. L. H. Tung, J .  A p p l .  Polym.  Sci., 13, 775 (1969). 
4 .  H. T. Davis, Introduction to Nonlinear Differential and Integral h'qwitwns, 

U.S. Atomic Energy Commission, Supt. of Documents, Washington, D.C.. 

6. V. S .  Pugachev, Theory of Random Functions, Addison-Wesley. Sew York, 

6. H. Freeman, Introduclwn to Statwtical Injerence, Addison-Weslcy, New York, 

7. E. Grushka, M. N. Myers. P. D. Schettlcr, and J.  C. Giddings, Anal. Chem.,  

6. D. E. Barton and K. E. Dennis. Bioinetrika, 39, 425 (1952). 
9. G-AE Subcomrnittrc on Measurement Concepts, ZEEE Trans. Audio 

1960, pp. 434ff. 

1962. pp. 44E. 

1963, Chapter 18. 

41, 889 (1969). 

Electroacoustics, AU-15(2), 45 (1967). 
10. G .  D. Bcrgland, IEEE Spectrum, 41, (July 1969). 
11. S. M. Chase and L. D. Fosdick, Commun. Ass. Comput. Mach., 12, 457 (1969). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



INSTRUMENT SPREADING CORRECTION IN GPC. I I  52 1 

12. A. Papoulis. T h e  Fozirier Integral and I t s  Applications, McGraw-Hill, New 

13. P. W. Murrill, R. W. Pike, and C. L. Smith, C h e m .  Eng., 76, 105 (February 

1.4. K. J. Bonibaugh, W. A. Dark, and R. E'. Lrvangie, Separ. Sci., 3, 375 (1968). 
16. D. W. Marquardt, J. Soc. l n d .  Appl .  Math. ,  2, 431 (1963). 
16. E. J. Henley and E. M. Rosen, Material and Energy Balance Computat ions,  

17. H. E. Pickett, M. J. It. Cantow, and J. F. Johnson, J. A p p l .  Polym.  Sci., 10, 

18. E. M. Rosen and T. Provder, Paper to be presented a t  the Ninth Inter- 

York, 1962, pp. 20f. 

1969). 

Wiley, New York, 1969, pp. 547f and 560-566. 

917 (1966). 

national GPC Seminar, Miami Reach, Florida, October. 1970. 

Received b y  editor February 23,15?'0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


